Accurately reconstructing particles from detector data is a critical challenge in experimental particle physics, where the spatial resolution of calorimeters has a crucial impact. This study explores the integration of super-resolution techniques into an LHC-like reconstruction pipeline to effectively enhance the granularity of calorimeter data and suppress noise. We find that this software preprocessing step can significantly improve reconstruction quality without physical changes to detectors. To demonstrate the impact of our approach, we propose a novel particle flow model that offers enhanced particle reconstruction quality and interpretability. These advancements underline the potential of super-resolution to impact both current and future particle physics experiments.
We study the awake complexity of graph problems that belong to the class O-LOCAL, which includes a large subset of problems solvable by sequential greedy algorithms, such as $(\Delta+1)$-coloring, maximal independent set, maximal matching, etc. It is known from previous work that, in $n$-node graphs of maximum degree $\Delta$, any problem in the class O-LOCAL can be solved by a deterministic distributed algorithm with awake complexity $O(\log\Delta+\log^\star n)$. In this paper, we show that any problem belonging to the class O-LOCAL can be solved by a deterministic distributed algorithm with awake complexity $O(\sqrt{\log n}\cdot\log^\star n)$. This leads to a polynomial improvement over the state of the art when $\Delta\gg 2^{\sqrt{\log n}}$, e.g., $\Delta=n^\epsilon$ for some arbitrarily small $\epsilon>0$. The key ingredient for achieving our results is the computation of a network decomposition, that uses a small-enough number of colors, in sub-logarithmic time in the Sleeping model, which can be of independent interest.
Pretraining methods gain increasing attraction recently for solving PDEs with neural operators. It alleviates the data scarcity problem encountered by neural operator learning when solving single PDE via training on large-scale datasets consisting of various PDEs and utilizing shared patterns among different PDEs to improve the solution precision. In this work, we propose the Latent Neural Operator Pretraining (LNOP) framework based on the Latent Neural Operator (LNO) backbone. We achieve universal transformation through pretraining on hybrid time-dependent PDE dataset to extract representations of different physical systems and solve various time-dependent PDEs in the latent space through finetuning on single PDE dataset. Our proposed LNOP framework reduces the solution error by 31.7% on four problems and can be further improved to 57.1% after finetuning. On out-of-distribution dataset, our LNOP model achieves roughly 50% lower error and 3$\times$ data efficiency on average across different dataset sizes. These results show that our method is more competitive in terms of solution precision, transfer capability and data efficiency compared to non-pretrained neural operators.
Utilitarian algorithm configuration is a general-purpose technique for automatically searching the parameter space of a given algorithm to optimize its performance, as measured by a given utility function, on a given set of inputs. Recently introduced utilitarian configuration procedures offer optimality guarantees about the returned parameterization while provably adapting to the hardness of the underlying problem. However, the applicability of these approaches is severely limited by the fact that they only search a finite, relatively small set of parameters. They cannot effectively search the configuration space of algorithms with continuous or uncountable parameters. In this paper we introduce a new procedure, which we dub COUP (Continuous, Optimistic Utilitarian Procrastination). COUP is designed to search infinite parameter spaces efficiently to find good configurations quickly. Furthermore, COUP maintains the theoretical benefits of previous utilitarian configuration procedures when applied to finite parameter spaces but is significantly faster, both provably and experimentally.
We propose a new estimator for nonparametric binary choice models that does not impose a parametric structure on either the systematic function of covariates or the distribution of the error term. A key advantage of our approach is its computational efficiency. For instance, even when assuming a normal error distribution as in probit models, commonly used sieves for approximating an unknown function of covariates can lead to a large-dimensional optimization problem when the number of covariates is moderate. Our approach, motivated by kernel methods in machine learning, views certain reproducing kernel Hilbert spaces as special sieve spaces, coupled with spectral cut-off regularization for dimension reduction. We establish the consistency of the proposed estimator for both the systematic function of covariates and the distribution function of the error term, and asymptotic normality of the plug-in estimator for weighted average partial derivatives. Simulation studies show that, compared to parametric estimation methods, the proposed method effectively improves finite sample performance in cases of misspecification, and has a rather mild efficiency loss if the model is correctly specified. Using administrative data on the grant decisions of US asylum applications to immigration courts, along with nine case-day variables on weather and pollution, we re-examine the effect of outdoor temperature on court judges' "mood", and thus, their grant decisions.
Function registration, also referred to as alignment, has been one of the fundamental problems in the field of functional data analysis. Classical registration methods such as the Fisher-Rao alignment focus on estimating optimal time warping function between functions. In recent studies, a model on time warping has attracted more attention, and it can be used as a prior term to combine with the classical method (as a likelihood term) in a Bayesian framework. The Bayesian approaches have been shown improvement over the classical methods. However, its prior model on time warping is often based a nonlinear approximation, which may introduce inaccuracy and inefficiency. To overcome these problems, we propose a new Bayesian approach by adopting a prior which provides a linear representation and various stochastic processes (Gaussian or non-Gaussian) can be effectively utilized on time warping. No linearization approximation is needed in the time warping computation, and the posterior can be obtained via a conventional Markov Chain Monte Carlo approach. We thoroughly investigate the impact of the prior on the performance of functional registration with multiple simulation examples, which demonstrate the superiority of the new framework over the previous methods. We finally utilize the new method in a real dataset and obtain desirable alignment result.
With the rapid development of diffusion models and flow-based generative models, there has been a surge of interests in solving noisy linear inverse problems, e.g., super-resolution, deblurring, denoising, colorization, etc, with generative models. However, while remarkable reconstruction performances have been achieved, their inference time is typically too slow since most of them rely on the seminal diffusion posterior sampling (DPS) framework and thus to approximate the intractable likelihood score, time-consuming gradient calculation through back-propagation is needed. To address this issue, this paper provides a fast and effective solution by proposing a simple closed-form approximation to the likelihood score. For both diffusion and flow-based models, extensive experiments are conducted on various noisy linear inverse problems such as noisy super-resolution, denoising, deblurring, and colorization. In all these tasks, our method (namely DMPS) demonstrates highly competitive or even better reconstruction performances while being significantly faster than all the baseline methods.
Entropic optimal transport (EOT) presents an effective and computationally viable alternative to unregularized optimal transport (OT), offering diverse applications for large-scale data analysis. In this work, we derive novel statistical bounds for empirical plug-in estimators of the EOT cost and show that their statistical performance in the entropy regularization parameter $\epsilon$ and the sample size $n$ only depends on the simpler of the two probability measures. For instance, under sufficiently smooth costs this yields the parametric rate $n^{-1/2}$ with factor $\epsilon^{-d/2}$, where $d$ is the minimum dimension of the two population measures. This confirms that empirical EOT also adheres to the lower complexity adaptation principle, a hallmark feature only recently identified for unregularized OT. As a consequence of our theory, we show that the empirical entropic Gromov-Wasserstein distance and its unregularized version for measures on Euclidean spaces also obey this principle. Additionally, we comment on computational aspects and complement our findings with Monte Carlo simulations. Our techniques employ empirical process theory and rely on a dual formulation of EOT over a single function class. Crucial to our analysis is the observation that the entropic cost-transformation of a function class does not increase its uniform metric entropy by much.
TScore is both an abstract formalism and its computer implementation to construct models of arbitrary kinds of time-related data. It is a research project about the semantics of musical notation, applying the method of computer-aided re-modelling to diverse formalisms and semantics of time-related data. Here we present the application to German tablature notation. While the current implemention is merely a proof of concept, the lean architecture of TScore allows easy adaptation and extension.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.