亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Detecting and quantifying marine pollution and macro-plastics is an increasingly pressing ecological issue that directly impacts ecology and human health. Efforts to quantify marine pollution are often conducted with sparse and expensive beach surveys, which are difficult to conduct on a large scale. Here, remote sensing can provide reliable estimates of plastic pollution by regularly monitoring and detecting marine debris in coastal areas. Medium-resolution satellite data of coastal areas is readily available and can be leveraged to detect aggregations of marine debris containing plastic litter. In this work, we present a detector for marine debris built on a deep segmentation model that outputs a probability for marine debris at the pixel level. We train this detector with a combination of annotated datasets of marine debris and evaluate it on specifically selected test sites where it is highly probable that plastic pollution is present in the detected marine debris. We demonstrate quantitatively and qualitatively that a deep learning model trained on this dataset issued from multiple sources outperforms existing detection models trained on previous datasets by a large margin. Our experiments show, consistent with the principles of data-centric AI, that this performance is due to our particular dataset design with extensive sampling of negative examples and label refinements rather than depending on the particular deep learning model. We hope to accelerate advances in the large-scale automated detection of marine debris, which is a step towards quantifying and monitoring marine litter with remote sensing at global scales, and release the model weights and training source code under //github.com/marccoru/marinedebrisdetector

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 平滑 · MoDELS · 核嶺回歸 · 嶺回歸 ·
2023 年 8 月 26 日

This article studies the derivatives in models that flexibly characterize the relationship between a response variable and multiple predictors, with goals of providing both accurate estimation and inference procedures for hypothesis testing. In the setting of tensor product reproducing spaces for nonparametric multivariate functions, we propose a plug-in kernel ridge regression estimator to estimate the derivatives of the underlying multivariate regression function under the smoothing spline ANOVA model. This estimator has an analytical form, making it simple to implement in practice. We first establish $L_\infty$ and $L_2$ convergence rates of the proposed estimator under general random designs. For derivatives with some selected interesting orders, we provide an in-depth analysis establishing the minimax lower bound, which matches the $L_2$ convergence rate. Additionally, motivated by a wide range of applications, we propose a hypothesis testing procedure to examine whether a derivative is zero. Theoretical results demonstrate that the proposed testing procedure achieves the correct size under the null hypothesis and is asymptotically powerful under local alternatives. For ease of use, we also develop an associated bootstrap algorithm to construct the rejection region and calculate the p-value, and the consistency of the proposed algorithm is established. Simulation studies using synthetic data and an application to a real-world dataset confirm the effectiveness of our methods.

Data features and class probabilities are two main perspectives when, e.g., evaluating model results and identifying problematic items. Class probabilities represent the likelihood that each instance belongs to a particular class, which can be produced by probabilistic classifiers or even human labeling with uncertainty. Since both perspectives are multi-dimensional data, dimensionality reduction (DR) techniques are commonly used to extract informative characteristics from them. However, existing methods either focus solely on the data feature perspective or rely on class probability estimates to guide the DR process. In contrast to previous work where separate views are linked to conduct the analysis, we propose a novel approach, class-constrained t-SNE, that combines data features and class probabilities in the same DR result. Specifically, we combine them by balancing two corresponding components in a cost function to optimize the positions of data points and iconic representation of classes -- class landmarks. Furthermore, an interactive user-adjustable parameter balances these two components so that users can focus on the weighted perspectives of interest and also empowers a smooth visual transition between varying perspectives to preserve the mental map. We illustrate its application potential in model evaluation and visual-interactive labeling. A comparative analysis is performed to evaluate the DR results.

Unsupervised methods for reconstructing structures face significant challenges in capturing the geometric details with consistent structures among diverse shapes of the same category. To address this issue, we present a novel unsupervised structural reconstruction method, named DPF-Net, based on a new Deformable Primitive Field (DPF) representation, which allows for high-quality shape reconstruction using parameterized geometric primitives. We design a two-stage shape reconstruction pipeline which consists of a primitive generation module and a primitive deformation module to approximate the target shape of each part progressively. The primitive generation module estimates the explicit orientation, position, and size parameters of parameterized geometric primitives, while the primitive deformation module predicts a dense deformation field based on a parameterized primitive field to recover shape details. The strong shape prior encoded in parameterized geometric primitives enables our DPF-Net to extract high-level structures and recover fine-grained shape details consistently. The experimental results on three categories of objects in diverse shapes demonstrate the effectiveness and generalization ability of our DPF-Net on structural reconstruction and shape segmentation.

Fish exhibit impressive locomotive performance and agility in complex underwater environments, using their undulating tails and pectoral fins for propulsion and maneuverability. Replicating these abilities in robotic fish is challenging; existing designs focus on either fast swimming or directional control at limited speeds, mainly within a confined environment. To address these limitations, we designed Snapp, an integrated robotic fish capable of swimming in open water with high speeds and full 3-dimensional maneuverability. A novel cyclic-differential method is layered on the mechanism. It integrates propulsion and yaw-steering for fast course corrections. Two independent pectoral fins provide pitch and roll control. We evaluated Snapp in open water environments. We demonstrated significant improvements in speed and maneuverability, achieving swimming speeds of 1.5 m/s (1.7 Body Lengths per second) and performing complex maneuvers, such as a figure-8 and S-shape trajectory. Instantaneous yaw changes of 15$^{\circ}$ in 0.4 s, a minimum turn radius of 0.85 m, and maximum pitch and roll rates of 3.5 rad/s and 1 rad/s, respectively, were recorded. Our results suggest that Snapp's swimming capabilities have excellent practical prospects for open seas and contribute significantly to developing agile robotic fishes.

Very unhealthy air quality is consistently connected with numerous diseases. Appropriate extreme analysis and accurate predictions are in rising demand for exploring potential linked causes and for providing suggestions for the environmental agency in public policy strategy. This paper aims to model the spatial and temporal pattern of both moderate and extremely poor PM10 concentrations (of daily mean) collected from 342 representative monitors distributed throughout mainland Spain from 2017 to 2021. We firstly propose and compare a series of Bayesian hierarchical generalized extreme models of annual maxima PM10 concentrations, including both the fixed effect of altitude, temperature, precipitation, vapour pressure and population density, as well as the spatio-temporal random effect with the Stochastic Partial Differential Equation (SPDE) approach and a lag-one dynamic auto-regressive component (AR(1)). Under WAIC, DIC and other criteria, the best model is selected with good predictive ability based on the first four-year data (2017--2020) for training and the last-year data (2021) for testing. We bring the structure of the best model to establish the joint Bayesian model of annual mean and annual maxima PM10 concentrations and provide evidence that certain predictors (precipitation, vapour pressure and population density) influence comparably while the other predictors (altitude and temperature) impact reversely in the different scaled PM10 concentrations. The findings are applied to identify the hot-spot regions with poor air quality using excursion functions specified at the grid level. It suggests that the community of Madrid and some sites in northwestern and southern Spain are likely to be exposed to severe air pollution, simultaneously exceeding the warning risk threshold.

The emergence of ChatGPT has generated much speculation in the press about its potential to disrupt social and economic systems. Its astonishing language ability has aroused strong curiosity among scholars about its performance in different domains. There have been many studies evaluating the ability of ChatGPT and GPT-4 in different tasks and disciplines. However, a comprehensive review summarizing the collective assessment findings is lacking. The objective of this survey is to thoroughly analyze prior assessments of ChatGPT and GPT-4, focusing on its language and reasoning abilities, scientific knowledge, and ethical considerations. Furthermore, an examination of the existing evaluation methods is conducted, offering several recommendations for future research in evaluating large language models.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司