Differential Dynamic Programming (DDP) is an efficient computational tool for solving nonlinear optimal control problems. It was originally designed as a single shooting method and thus is sensitive to the initial guess supplied. This work considers the extension of DDP to multiple shooting (MS), improving its robustness to initial guesses. A novel derivation is proposed that accounts for the defect between shooting segments during the DDP backward pass, while still maintaining quadratic convergence locally. The derivation enables unifying multiple previous MS algorithms, and opens the door to many smaller algorithmic improvements. A penalty method is introduced to strategically control the step size, further improving the convergence performance. An adaptive merit function and a more reliable acceptance condition are employed for globalization. The effects of these improvements are benchmarked for trajectory optimization with a quadrotor, an acrobot, and a manipulator. MS-DDP is also demonstrated for use in Model Predictive Control (MPC) for dynamic jumping with a quadruped robot, showing its benefits over a single shooting approach.
The Fractional Diffusion Equation (FDE) is a mathematical model that describes anomalous transport phenomena characterized by non-local and long-range dependencies which deviate from the traditional behavior of diffusion. Solving this equation numerically is challenging due to the need to discretize complicated integral operators which increase the computational costs. These complexities are exacerbated by nonlinear source terms, nonsmooth data and irregular domains. In this study, we propose a second order Exponential Time Differencing Finite Element Method (ETD-RDP-FEM) to efficiently solve nonlinear FDE, posed in irregular domains. This approach discretizes matrix exponentials using a rational function with real and distinct poles, resulting in an L-stable scheme that damps spurious oscillations caused by non-smooth initial data. The method is shown to outperform existing second-order methods for FDEs with a higher accuracy and faster computational time.
A Private Information Retrieval (PIR) protocol based on coding theory for a single server is proposed. It provides computational security against linear algebra attacks, addressing the main drawback of previous PIR proposals based on coding theory. The approach involves two types of codes each one over a different ring, an inner non-free linear code that will be used as a distinguisher of some elements added to the query matrix, and an outer code that will be used for generating the query matrix. Moreover, it only uses modular arithmetic at the server level and the recovering stage if the base ring chosen for the inner code is $\mathbb Z_m$.
Information Disguise (ID), a part of computational ethics in Natural Language Processing (NLP), is concerned with best practices of textual paraphrasing to prevent the non-consensual use of authors' posts on the Internet. Research on ID becomes important when authors' written online communication pertains to sensitive domains, e.g., mental health. Over time, researchers have utilized AI-based automated word spinners (e.g., SpinRewriter, WordAI) for paraphrasing content. However, these tools fail to satisfy the purpose of ID as their paraphrased content still leads to the source when queried on search engines. There is limited prior work on judging the effectiveness of paraphrasing methods for ID on search engines or their proxies, neural retriever (NeurIR) models. We propose a framework where, for a given sentence from an author's post, we perform iterative perturbation on the sentence in the direction of paraphrasing with an attempt to confuse the search mechanism of a NeurIR system when the sentence is queried on it. Our experiments involve the subreddit 'r/AmItheAsshole' as the source of public content and Dense Passage Retriever as a NeurIR system-based proxy for search engines. Our work introduces a novel method of phrase-importance rankings using perplexity scores and involves multi-level phrase substitutions via beam search. Our multi-phrase substitution scheme succeeds in disguising sentences 82% of the time and hence takes an essential step towards enabling researchers to disguise sensitive content effectively before making it public. We also release the code of our approach.
2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.
Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.
Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.
How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan