亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Finite mixture models are flexible methods that are commonly used for model-based clustering. A recent focus in the model-based clustering literature is to highlight the difference between the number of components in a mixture model and the number of clusters. The number of clusters is more relevant from a practical stand point, but to date, the focus of prior distribution formulation has been on the number of components. In light of this, we develop a finite mixture methodology that permits eliciting prior information directly on the number of clusters in an intuitive way. This is done by employing an asymmetric Dirichlet distribution as a prior on the weights of a finite mixture. Further, a penalized complexity motivated prior is employed for the Dirichlet shape parameter. We illustrate the ease to which prior information can be elicited via our construction and the flexibility of the resulting induced prior on the number of clusters. We also demonstrate the utility of our approach using numerical experiments and two real world data sets.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 控制器 · 在線 · 統計量 · 成比例 ·
2023 年 9 月 22 日

In experimental design, Neyman allocation refers to the practice of allocating subjects into treated and control groups, potentially in unequal numbers proportional to their respective standard deviations, with the objective of minimizing the variance of the treatment effect estimator. This widely recognized approach increases statistical power in scenarios where the treated and control groups have different standard deviations, as is often the case in social experiments, clinical trials, marketing research, and online A/B testing. However, Neyman allocation cannot be implemented unless the standard deviations are known in advance. Fortunately, the multi-stage nature of the aforementioned applications allows the use of earlier stage observations to estimate the standard deviations, which further guide allocation decisions in later stages. In this paper, we introduce a competitive analysis framework to study this multi-stage experimental design problem. We propose a simple adaptive Neyman allocation algorithm, which almost matches the information-theoretic limit of conducting experiments. Using online A/B testing data from a social media site, we demonstrate the effectiveness of our adaptive Neyman allocation algorithm, highlighting its practicality especially when applied with only a limited number of stages.

Vector graphics are an industry-standard way to represent and share visual designs. Designers frequently source and incorporate styles from existing designs into their own work. Unfortunately, popular design tools aren't well suited for this task. We present VST, Vector Style Transfer, a novel design tool for flexibly transferring visual styles between vector graphics. The core of VST lies in leveraging automation while respecting designers' tastes and the subjectivity inherent to style transfer. In VST, designers tune a cross-design element correspondence and customize which style attributes to change. We report results from a user study in which designers used VST to control style transfer between several designs, including designs participants created with external tools beforehand. VST shows that enabling design correspondence tuning and customization is one way to support interactive, flexible style transfer. We also find that someone using VST can significantly reduce the time and work for style transfer compared to experienced designers using industry-standard tools.

Neural speaker embeddings encode the speaker's speech characteristics through a DNN model and are prevalent for speaker verification tasks. However, few studies have investigated the usage of neural speaker embeddings for an ASR system. In this work, we present our efforts w.r.t integrating neural speaker embeddings into a conformer based hybrid HMM ASR system. For ASR, our improved embedding extraction pipeline in combination with the Weighted-Simple-Add integration method results in x-vector and c-vector reaching on par performance with i-vectors. We further compare and analyze different speaker embeddings. We present our acoustic model improvements obtained by switching from newbob learning rate schedule to one cycle learning schedule resulting in a ~3% relative WER reduction on Switchboard, additionally reducing the overall training time by 17%. By further adding neural speaker embeddings, we gain additional ~3% relative WER improvement on Hub5'00. Our best Conformer-based hybrid ASR system with speaker embeddings achieves 9.0% WER on Hub5'00 and Hub5'01 with training on SWB 300h.

We consider the problem of training private recommendation models with access to public item features. Training with Differential Privacy (DP) offers strong privacy guarantees, at the expense of loss in recommendation quality. We show that incorporating public item features during training can help mitigate this loss in quality. We propose a general approach based on collective matrix factorization (CMF), that works by simultaneously factorizing two matrices: the user feedback matrix (representing sensitive data) and an item feature matrix that encodes publicly available (non-sensitive) item information. The method is conceptually simple, easy to tune, and highly scalable. It can be applied to different types of public item data, including: (1) categorical item features; (2) item-item similarities learned from public sources; and (3) publicly available user feedback. Furthermore, these data modalities can be collectively utilized to fully leverage public data. Evaluating our method on a standard DP recommendation benchmark, we find that using public item features significantly narrows the quality gap between private models and their non-private counterparts. As privacy constraints become more stringent, models rely more heavily on public side features for recommendation. This results in a smooth transition from collaborative filtering to item-based contextual recommendations.

This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

Attributed graph clustering is challenging as it requires joint modelling of graph structures and node attributes. Recent progress on graph convolutional networks has proved that graph convolution is effective in combining structural and content information, and several recent methods based on it have achieved promising clustering performance on some real attributed networks. However, there is limited understanding of how graph convolution affects clustering performance and how to properly use it to optimize performance for different graphs. Existing methods essentially use graph convolution of a fixed and low order that only takes into account neighbours within a few hops of each node, which underutilizes node relations and ignores the diversity of graphs. In this paper, we propose an adaptive graph convolution method for attributed graph clustering that exploits high-order graph convolution to capture global cluster structure and adaptively selects the appropriate order for different graphs. We establish the validity of our method by theoretical analysis and extensive experiments on benchmark datasets. Empirical results show that our method compares favourably with state-of-the-art methods.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

Script event prediction requires a model to predict the subsequent event given an existing event context. Previous models based on event pairs or event chains cannot make full use of dense event connections, which may limit their capability of event prediction. To remedy this, we propose constructing an event graph to better utilize the event network information for script event prediction. In particular, we first extract narrative event chains from large quantities of news corpus, and then construct a narrative event evolutionary graph (NEEG) based on the extracted chains. NEEG can be seen as a knowledge base that describes event evolutionary principles and patterns. To solve the inference problem on NEEG, we present a scaled graph neural network (SGNN) to model event interactions and learn better event representations. Instead of computing the representations on the whole graph, SGNN processes only the concerned nodes each time, which makes our model feasible to large-scale graphs. By comparing the similarity between input context event representations and candidate event representations, we can choose the most reasonable subsequent event. Experimental results on widely used New York Times corpus demonstrate that our model significantly outperforms state-of-the-art baseline methods, by using standard multiple choice narrative cloze evaluation.

Providing model-generated explanations in recommender systems is important to user experience. State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely ignored recently due to the availability of vast amount of data and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors and the knowledge is helpful for providing informed explanations regarding the recommended items. In this work, we propose to reason over knowledge base embeddings for explainable recommendation. Specifically, we propose a knowledge base representation learning framework to embed heterogeneous entities for recommendation, and based on the embedded knowledge base, a soft matching algorithm is proposed to generate personalized explanations for the recommended items. Experimental results on real-world e-commerce datasets verified the superior recommendation performance and the explainability power of our approach compared with state-of-the-art baselines.

北京阿比特科技有限公司