Anomaly detection is a challenging task for machine learning algorithms due to the inherent class imbalance. It is costly and time-demanding to manually analyse the observed data, thus usually only few known anomalies if any are available. Inspired by generative models and the analysis of the hidden activations of neural networks, we introduce a novel unsupervised anomaly detection method called DA3D. Here, we use adversarial autoencoders to generate anomalous counterexamples based on the normal data only. These artificial anomalies used during training allow the detection of real, yet unseen anomalies. With our novel generative approach, we transform the unsupervised task of anomaly detection to a supervised one, which is more tractable by machine learning and especially deep learning methods. DA3D surpasses the performance of state-of-the-art anomaly detection methods in a purely data-driven way, where no domain knowledge is required.
News image captioning task is a variant of image captioning task which requires model to generate a more informative caption with news image and the associated news article. Multimodal Large Language models have developed rapidly in recent years and is promising in news image captioning task. However, according to our experiments, common MLLMs are not good at generating the entities in zero-shot setting. Their abilities to deal with the entities information are still limited after simply fine-tuned on news image captioning dataset. To obtain a more powerful model to handle the multimodal entity information, we design two multimodal entity-aware alignment tasks and an alignment framework to align the model and generate the news image captions. Our method achieves better results than previous state-of-the-art models in CIDEr score (72.33 -> 86.29) on GoodNews dataset and (70.83 -> 85.61) on NYTimes800k dataset.
Sparse basis recovery is a classical and important statistical learning problem when the number of model dimensions $p$ is much larger than the number of samples $n$. However, there has been little work that studies sparse basis recovery in the Federated Learning (FL) setting, where the client data's differential privacy (DP) must also be simultaneously protected. In particular, the performance guarantees of existing DP-FL algorithms (such as DP-SGD) will degrade significantly when $p \gg n$, and thus, they will fail to learn the true underlying sparse model accurately. In this work, we develop a new differentially private sparse basis recovery algorithm for the FL setting, called SPriFed-OMP. SPriFed-OMP converts OMP (Orthogonal Matching Pursuit) to the FL setting. Further, it combines SMPC (secure multi-party computation) and DP to ensure that only a small amount of noise needs to be added in order to achieve differential privacy. As a result, SPriFed-OMP can efficiently recover the true sparse basis for a linear model with only $n = O(\sqrt{p})$ samples. We further present an enhanced version of our approach, SPriFed-OMP-GRAD based on gradient privatization, that improves the performance of SPriFed-OMP. Our theoretical analysis and empirical results demonstrate that both SPriFed-OMP and SPriFed-OMP-GRAD terminate in a small number of steps, and they significantly outperform the previous state-of-the-art DP-FL solutions in terms of the accuracy-privacy trade-off.
Federated learning (FL) is a machine learning paradigm that targets model training without gathering the local data dispersed over various data sources. Standard FL, which employs a single server, can only support a limited number of users, leading to degraded learning capability. In this work, we consider a multi-server FL framework, referred to as \emph{Confederated Learning} (CFL), in order to accommodate a larger number of users. A CFL system is composed of multiple networked edge servers, with each server connected to an individual set of users. Decentralized collaboration among servers is leveraged to harness all users' data for model training. Due to the potentially massive number of users involved, it is crucial to reduce the communication overhead of the CFL system. We propose a stochastic gradient method for distributed learning in the CFL framework. The proposed method incorporates a conditionally-triggered user selection (CTUS) mechanism as the central component to effectively reduce communication overhead. Relying on a delicately designed triggering condition, the CTUS mechanism allows each server to select only a small number of users to upload their gradients, without significantly jeopardizing the convergence performance of the algorithm. Our theoretical analysis reveals that the proposed algorithm enjoys a linear convergence rate. Simulation results show that it achieves substantial improvement over state-of-the-art algorithms in terms of communication efficiency.
Fairness for machine learning predictions is widely required in practice for legal, ethical, and societal reasons. Existing work typically focuses on settings without unobserved confounding, even though unobserved confounding can lead to severe violations of causal fairness and, thus, unfair predictions. In this work, we analyze the sensitivity of causal fairness to unobserved confounding. Our contributions are three-fold. First, we derive bounds for causal fairness metrics under different sources of unobserved confounding. This enables practitioners to examine the sensitivity of their machine learning models to unobserved confounding in fairness-critical applications. Second, we propose a novel neural framework for learning fair predictions, which allows us to offer worst-case guarantees of the extent to which causal fairness can be violated due to unobserved confounding. Third, we demonstrate the effectiveness of our framework in a series of experiments, including a real-world case study about predicting prison sentences. To the best of our knowledge, ours is the first work to study causal fairness under unobserved confounding. To this end, our work is of direct practical value as a refutation strategy to ensure the fairness of predictions in high-stakes applications.
Denoising diffusion models have emerged as a powerful tool for various image generation and editing tasks, facilitating the synthesis of visual content in an unconditional or input-conditional manner. The core idea behind them is learning to reverse the process of gradually adding noise to images, allowing them to generate high-quality samples from a complex distribution. In this survey, we provide an exhaustive overview of existing methods using diffusion models for image editing, covering both theoretical and practical aspects in the field. We delve into a thorough analysis and categorization of these works from multiple perspectives, including learning strategies, user-input conditions, and the array of specific editing tasks that can be accomplished. In addition, we pay special attention to image inpainting and outpainting, and explore both earlier traditional context-driven and current multimodal conditional methods, offering a comprehensive analysis of their methodologies. To further evaluate the performance of text-guided image editing algorithms, we propose a systematic benchmark, EditEval, featuring an innovative metric, LMM Score. Finally, we address current limitations and envision some potential directions for future research. The accompanying repository is released at //github.com/SiatMMLab/Awesome-Diffusion-Model-Based-Image-Editing-Methods.
In machine learning and computer graphics, a fundamental task is the approximation of a probability density function through a well-dispersed collection of samples. Providing a formal metric for measuring the distance between probability measures on general spaces, Optimal Transport (OT) emerges as a pivotal theoretical framework within this context. However, the associated computational burden is prohibitive in most real-world scenarios. Leveraging the simple structure of OT in 1D, Sliced Optimal Transport (SOT) has appeared as an efficient alternative to generate samples in Euclidean spaces. This paper pushes the boundaries of SOT utilization in computational geometry problems by extending its application to sample densities residing on more diverse mathematical domains, including the spherical space Sd , the hyperbolic plane Hd , and the real projective plane Pd . Moreover, it ensures the quality of these samples by achieving a blue noise characteristic, regardless of the dimensionality involved. The robustness of our approach is highlighted through its application to various geometry processing tasks, such as the intrinsic blue noise sampling of meshes, as well as the sampling of directions and rotations. These applications collectively underscore the efficacy of our methodology.
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.
Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.
Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.