亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Although there have been remarkable advances in dialogue systems through the dialogue systems technology competition (DSTC), it remains one of the key challenges to building a robust task-oriented dialogue system with a speech interface. Most of the progress has been made for text-based dialogue systems since there are abundant datasets with written corpora while those with spoken dialogues are very scarce. However, as can be seen from voice assistant systems such as Siri and Alexa, it is of practical importance to transfer the success to spoken dialogues. In this paper, we describe our engineering effort in building a highly successful model that participated in the speech-aware dialogue systems technology challenge track in DSTC11. Our model consists of three major modules: (1) automatic speech recognition error correction to bridge the gap between the spoken and the text utterances, (2) text-based dialogue system (D3ST) for estimating the slots and values using slot descriptions, and (3) post-processing for recovering the error of the estimated slot value. Our experiments show that it is important to use an explicit automatic speech recognition error correction module, post-processing, and data augmentation to adapt a text-based dialogue state tracker for spoken dialogue corpora.

相關內容

In this work, we investigate the problem of neural-based error correction decoding, and more specifically, the new so-called syndrome-based decoding technique introduced to tackle scalability in the training phase for larger code sizes. We improve on previous works in terms of allowing full decoding of the message rather than codewords, allowing thus the application to non-systematic codes, and proving that the single-message training property is still viable. The suggested system is implemented and tested on polar codes of sizes (64,32) and (128,64), and a BCH of size (63,51), leading to a significant improvement in both Bit Error Rate (BER) and Frame Error Rate (FER), with gains between 0.3dB and 1dB for the implemented codes in the high Signal-to-Noise Ratio (SNR) regime.

With the capacity to capture high-order collaborative signals, Graph Neural Networks (GNNs) have emerged as powerful methods in Recommender Systems (RS). However, their efficacy often hinges on the assumption that training and testing data share the same distribution (a.k.a. IID assumption), and exhibits significant declines under distribution shifts. Distribution shifts commonly arises in RS, often attributed to the dynamic nature of user preferences or ubiquitous biases during data collection in RS. Despite its significance, researches on GNN-based recommendation against distribution shift are still sparse. To bridge this gap, we propose Distributionally Robust GNN (DR-GNN) that incorporates Distributional Robust Optimization (DRO) into the GNN-based recommendation. DR-GNN addresses two core challenges: 1) To enable DRO to cater to graph data intertwined with GNN, we reinterpret GNN as a graph smoothing regularizer, thereby facilitating the nuanced application of DRO; 2) Given the typically sparse nature of recommendation data, which might impede robust optimization, we introduce slight perturbations in the training distribution to expand its support. Notably, while DR-GNN involves complex optimization, it can be implemented easily and efficiently. Our extensive experiments validate the effectiveness of DR-GNN against three typical distribution shifts. The code is available at //github.com/WANGBohaO-jpg/DR-GNN.

Simulating the mechanical response of advanced materials can be done more accurately using concurrent multiscale models than with single-scale simulations. However, the computational costs stand in the way of the practical application of this approach. The costs originate from microscale Finite Element (FE) models that must be solved at every macroscopic integration point. A plethora of surrogate modeling strategies attempt to alleviate this cost by learning to predict macroscopic stresses from macroscopic strains, completely replacing the microscale models. In this work, we introduce an alternative surrogate modeling strategy that allows for keeping the multiscale nature of the problem, allowing it to be used interchangeably with an FE solver for any time step. Our surrogate provides all microscopic quantities, which are then homogenized to obtain macroscopic quantities of interest. We achieve this for an elasto-plastic material by predicting full-field microscopic strains using a graph neural network (GNN) while retaining the microscopic constitutive material model to obtain the stresses. This hybrid data-physics graph-based approach avoids the high dimensionality originating from predicting full-field responses while allowing non-locality to arise. By training the GNN on a variety of meshes, it learns to generalize to unseen meshes, allowing a single model to be used for a range of microstructures. The embedded microscopic constitutive model in the GNN implicitly tracks history-dependent variables and leads to improved accuracy. We demonstrate for several challenging scenarios that the surrogate can predict complex macroscopic stress-strain paths. As the computation time of our method scales favorably with the number of elements in the microstructure compared to the FE method, our method can significantly accelerate FE2 simulations.

The success of Graph Neural Networks (GNNs) has led to a need for understanding their decision-making process and providing explanations for their predictions, which has given rise to explainable AI (XAI) that offers transparent explanations for black-box models. Recently, the use of prototypes has successfully improved the explainability of models by learning prototypes to imply training graphs that affect the prediction. However, these approaches tend to provide prototypes with excessive information from the entire graph, leading to the exclusion of key substructures or the inclusion of irrelevant substructures, which can limit both the interpretability and the performance of the model in downstream tasks. In this work, we propose a novel framework of explainable GNNs, called interpretable Prototype-based Graph Information Bottleneck (PGIB) that incorporates prototype learning within the information bottleneck framework to provide prototypes with the key subgraph from the input graph that is important for the model prediction. This is the first work that incorporates prototype learning into the process of identifying the key subgraphs that have a critical impact on the prediction performance. Extensive experiments, including qualitative analysis, demonstrate that PGIB outperforms state-of-the-art methods in terms of both prediction performance and explainability.

In recent developments within the research community, the integration of Large Language Models (LLMs) in creating fully autonomous agents has garnered significant interest. Despite this, LLM-based agents frequently demonstrate notable shortcomings in adjusting to dynamic environments and fully grasping human needs. In this work, we introduce the problem of LLM-based human-agent collaboration for complex task-solving, exploring their synergistic potential. In addition, we propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC. This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process. We construct a human-agent collaboration dataset to train this policy model in an offline reinforcement learning environment. Our validation tests confirm the model's effectiveness. The results demonstrate that the synergistic efforts of humans and LLM-based agents significantly improve performance in complex tasks, primarily through well-planned, limited human intervention. Datasets and code are available at: //github.com/XueyangFeng/ReHAC.

The renowned difference-in-differences (DiD) estimator relies on the assumption of 'parallel trends,' which does not hold in many practical applications. To address this issue, the econometrics literature has turned to the triple difference estimator. Both DiD and triple difference are limited to assessing average effects exclusively. An alternative avenue is offered by the changes-in-changes (CiC) estimator, which provides an estimate of the entire counterfactual distribution at the cost of relying on (stronger) distributional assumptions. In this work, we extend the triple difference estimator to accommodate the CiC framework, presenting the `triple changes estimator' and its identification assumptions, thereby expanding the scope of the CiC paradigm. Subsequently, we empirically evaluate the proposed framework and apply it to a study examining the impact of Medicaid expansion on children's preventive care.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

Verifiability is one of the core editing principles in Wikipedia, where editors are encouraged to provide citations for the added statements. Statements can be any arbitrary piece of text, ranging from a sentence up to a paragraph. However, in many cases, citations are either outdated, missing, or link to non-existing references (e.g. dead URL, moved content etc.). In total, 20\% of the cases such citations refer to news articles and represent the second most cited source. Even in cases where citations are provided, there are no explicit indicators for the span of a citation for a given piece of text. In addition to issues related with the verifiability principle, many Wikipedia entity pages are incomplete, with relevant information that is already available in online news sources missing. Even for the already existing citations, there is often a delay between the news publication time and the reference time. In this thesis, we address the aforementioned issues and propose automated approaches that enforce the verifiability principle in Wikipedia, and suggest relevant and missing news references for further enriching Wikipedia entity pages.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司