We present large-eddy-simulation (LES) modeling approaches for the simulation of atmospheric boundary layer turbulence that are of direct relevance to wind energy production. In this paper, we study a GABLS benchmark problem using high-order spectral element code Nek5000/RS and a block-structured second-order finite-volume code AMR-Wind which are supported under the DOE's Exascale Computing Project (ECP) Center for Efficient Exascale Discretizations (CEED) and ExaWind projects, respectively, targeting application simulations on various acceleration-device based exascale computing platforms. As for Nek5000/RS we demonstrate our newly developed subgrid-scale (SGS) models based on mean-field eddy viscosity (MFEV), high-pass filter (HPF), and Smagorinsky (SMG) with traction boundary conditions. For the traction boundary conditions, a novel analytical approach is presented that solves for the surface friction velocity and surface kinematic temperature flux. For AMR-Wind, standard SMG is used and discussed in detail the traction boundary conditions for convergence. We provide low-order statistics, convergence and turbulent structure analysis. Verification and convergence studies were performed for both codes at various resolutions and it was found that Nek5000/RS demonstrate convergence with resolution for all ABL bulk parameters, including boundary layer and low level jet (LLJ) height. Extensive comparisons are presented with simulation data from the literature.
Pringle maneuver (PM) in laparoscopic liver resection aims to reduce blood loss and provide a clear surgical view by intermittently blocking blood inflow of the liver, whereas prolonged PM may cause ischemic injury. To comprehensively monitor this surgical procedure and provide timely warnings of ineffective and prolonged blocking, we suggest two complementary AI-assisted surgical monitoring tasks: workflow recognition and blocking effectiveness detection in liver resections. The former presents challenges in real-time capturing of short-term PM, while the latter involves the intraoperative discrimination of long-term liver ischemia states. To address these challenges, we meticulously collect a novel dataset, called PmLR50, consisting of 25,037 video frames covering various surgical phases from 50 laparoscopic liver resection procedures. Additionally, we develop an online baseline for PmLR50, termed PmNet. This model embraces Masked Temporal Encoding (MTE) and Compressed Sequence Modeling (CSM) for efficient short-term and long-term temporal information modeling, and embeds Contrastive Prototype Separation (CPS) to enhance action discrimination between similar intraoperative operations. Experimental results demonstrate that PmNet outperforms existing state-of-the-art surgical workflow recognition methods on the PmLR50 benchmark. Our research offers potential clinical applications for the laparoscopic liver surgery community. Source code and data will be publicly available.
Autonomous reconfigurable intelligent surface (RIS) offers the potential to simplify deployment by reducing the need for real-time remote control between a base station (BS) and an RIS. However, we highlight two major challenges posed by autonomy. The first is implementation complexity, as autonomy requires hybrid RISs (HRISs) equipped with additional on-board hardware to monitor the propagation environment and conduct local channel estimation (CHEST), a process known as probing. The second challenge, termed probe distortion, reflects a form of the observer effect: during probing, an HRIS can inadvertently alter the propagation environment, potentially disrupting the operations of other communicating devices. While implementation complexity has been extensively studied, probe distortion remains largely unexplored. To further assess the potential of autonomous RISs, this paper comprehensively and pragmatically studies fundamental trade-offs posed by these challenges. We examine the robustness of an HRIS-assisted massive multiple-input multiple-output (mMIMO) system under minimal design choices that reflect the essential elements and stringent conditions, including (a) two extremes of implementation complexity realized through minimalist operational designs of two HRIS hardware architectures, and (b) an oblivious BS that fully embraces probe distortion. To make our analysis possible, we propose a physical-layer orchestration framework that aligns HRIS and mMIMO operations. We provide empirical evidence showing that autonomous RIS holds promise even under these strict conditions and propose new research directions, particularly for advancing the understanding of probe distortion.
In most multiple-input multiple-output (MIMO) communication systems, antennas are spaced at least half a wavelength apart to reduce mutual coupling. In this configuration, the maximum array gain is equal to the number of antennas. However, when the antenna spacing is significantly reduced, the array gain of a compact array can become proportional to the square of the number of antennas, greatly exceeding that of traditional MIMO systems. Achieving this "superdirectivity" requires complex calculations of the excitation coefficients (beamforming vector), which is a challenging task. In this paper, we address this problem with a novel double coupling-based superdirective beamforming method. In particular, we categorize the antenna coupling effects to impedance coupling and field coupling. By characterizing these two coupling in model, we derive the beamforming vector for superdirective arrays. We prove that the field coupling matrix has the unique solution for an antenna array, and itself has the ability to fully characterize the distorted coupling field. Based on this proven theorem, we propose a method that accurately calculates the coupling matrix using only a number of angle sampling points on the order of the number of antennas. Moreover, a prototype of an independently-controlled superdirective antenna array is developed. Full-wave electromagnetic simulations and real-world experiments validate the effectiveness of our proposed approaches, and superdirectivity is achieved in reality by a compact array with 4 and 8 dipole antennas.
The recent introduction of geometric partition entropy brought a new viewpoint to non-parametric entropy quantification that incorporated the impacts of informative outliers, but its original formulation was limited to the context of a one-dimensional state space. A generalized definition of geometric partition entropy is now provided for samples within a bounded (finite measure) region of a d-dimensional vector space. The basic definition invokes the concept of a Voronoi diagram, but the computational complexity and reliability of Voronoi diagrams in high dimension make estimation by direct theoretical computation unreasonable. This leads to the development of approximation schemes that enable estimation that is faster than current methods by orders of magnitude. The partition intersection ($\pi$) approximation, in particular, enables direct estimates of marginal entropy in any context resulting in an efficient and versatile mutual information estimator. This new measure-based paradigm for data driven information theory allows flexibility in the incorporation of geometry to vary the representation of outlier impact, which leads to a significant broadening in the applicability of established entropy-based concepts. The incorporation of informative outliers is illustrated through analysis of transient dynamics in the synchronization of coupled chaotic dynamical systems.
The immersed interface method (IIM) for models of fluid flow and fluid-structure interaction imposes jump conditions that capture stress discontinuities generated by forces that are concentrated along immersed boundaries. Most prior work using the IIM for fluid dynamic applications has focused on smooth interfaces, but boundaries with sharp features such as corners and edges can appear in practical analyses, particularly on engineered structures. The present study builds on our work to integrate finite element-type representations of interface geometries with the IIM. Initial realizations of this approach used a continuous Galerkin (CG) finite element discretization for the boundary, but as we show herein, these approaches generate large errors near sharp geometrical features. To overcome this difficulty, this study introduces an IIM approach using discontinuous Galerkin (DG) representation of the jump conditions. Numerical examples explore the impacts of different interface representations on accuracy for both smooth and sharp boundaries, particularly flows interacting with fixed interface configurations. We demonstrate that using a DG approach provides accuracy that is comparable to the CG method for smooth cases. Further, we identify a time step size restriction for the CG representation that is directly related to the sharpness of the geometry. In contrast, time step size restrictions imposed by DG representations are demonstrated to be insensitive to the presence of sharp features.
What distinguishes robust models from non-robust ones? While for ImageNet distribution shifts it has been shown that such differences in robustness can be traced back predominantly to differences in training data, so far it is not known what that translates to in terms of what the model has learned. In this work, we bridge this gap by probing the representation spaces of 16 robust zero-shot CLIP vision encoders with various backbones (ResNets and ViTs) and pretraining sets (OpenAI, LAION-400M, LAION-2B, YFCC15M, CC12M and {DataComp}), and comparing them to the representation spaces of less robust models with identical backbones, but different (pre)training sets or objectives (CLIP pretraining on ImageNet-Captions, and supervised training or finetuning on ImageNet).Through this analysis, we generate three novel insights. Firstly, we detect the presence of outlier features in robust zero-shot CLIP vision encoders, which to the best of our knowledge is the first time these are observed in non-language and non-transformer models. Secondly, we find the existence of outlier features to be an indication of ImageNet shift robustness in models, since we only find them in robust models in our analysis. Lastly, we also investigate the number of unique encoded concepts in the representation space and find zero-shot CLIP models to encode a higher number of unique concepts in their representation space. However, we do not find this to be an indicator of ImageNet shift robustness and hypothesize that it is rather related to the language supervision. Since the presence of outlier features can be detected without access to any data from shifted datasets, we believe that they could be a useful tool for practitioners to get a feeling for the distribution shift robustness of a pretrained model during deployment.
Simplicity bias, the propensity of deep models to over-rely on simple features, has been identified as a potential reason for limited out-of-distribution generalization of neural networks (Shah et al., 2020). Despite the important implications, this phenomenon has been theoretically confirmed and characterized only under strong dataset assumptions, such as linear separability (Lyu et al., 2021). In this work, we characterize simplicity bias for general datasets in the context of two-layer neural networks initialized with small weights and trained with gradient flow. Specifically, we prove that in the early training phases, network features cluster around a few directions that do not depend on the size of the hidden layer. Furthermore, for datasets with an XOR-like pattern, we precisely identify the learned features and demonstrate that simplicity bias intensifies during later training stages. These results indicate that features learned in the middle stages of training may be more useful for OOD transfer. We support this hypothesis with experiments on image data.
We present a computational formulation for the approximate version of several variational inequality problems, investigating their computational complexity and establishing PPAD-completeness. Examining applications in computational game theory, we specifically focus on two key concepts: resilient Nash equilibrium, and multi-leader-follower games -- domains traditionally known for the absence of general solutions. In the presence of standard assumptions and relaxation techniques, we formulate problem versions for such games that are expressible in terms of variational inequalities, ultimately leading to proofs of PPAD-completeness.
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.