Attention mechanisms have become of crucial importance in deep learning in recent years. These non-local operations, which are similar to traditional patch-based methods in image processing, complement local convolutions. However, computing the full attention matrix is an expensive step with heavy memory and computational loads. These limitations curb network architectures and performances, in particular for the case of high resolution images. We propose an efficient attention layer based on the stochastic algorithm PatchMatch, which is used for determining approximate nearest neighbors. We refer to our proposed layer as a "Patch-based Stochastic Attention Layer" (PSAL). Furthermore, we propose different approaches, based on patch aggregation, to ensure the differentiability of PSAL, thus allowing end-to-end training of any network containing our layer. PSAL has a small memory footprint and can therefore scale to high resolution images. It maintains this footprint without sacrificing spatial precision and globality of the nearest neighbors, which means that it can be easily inserted in any level of a deep architecture, even in shallower levels. We demonstrate the usefulness of PSAL on several image editing tasks, such as image inpainting, guided image colorization, and single-image super-resolution. Our code is available at: //github.com/ncherel/psal
Mind-map generation aims to process a document into a hierarchical structure to show its central idea and branches. Such a manner is more conducive to understanding the logic and semantics of the document than plain text. Recently, a state-of-the-art method encodes the sentences of a document sequentially and converts them to a relation graph via sequence-to-graph. Though this method is efficient to generate mind-maps in parallel, its mechanism focuses more on sequential features while hardly capturing structural information. Moreover, it's difficult to model long-range semantic relations. In this work, we propose a coreference-guided mind-map generation network (CMGN) to incorporate external structure knowledge. Specifically, we construct a coreference graph based on the coreference semantic relationship to introduce the graph structure information. Then we employ a coreference graph encoder to mine the potential governing relations between sentences. In order to exclude noise and better utilize the information of the coreference graph, we adopt a graph enhancement module in a contrastive learning manner. Experimental results demonstrate that our model outperforms all the existing methods. The case study further proves that our model can more accurately and concisely reveal the structure and semantics of a document. Code and data are available at //github.com/Cyno2232/CMGN.
While reinforcement learning has shown experimental success in a number of applications, it is known to be sensitive to noise and perturbations in the parameters of the system, leading to high variance in the total reward amongst different episodes in slightly different environments. To introduce robustness, as well as sample efficiency, risk-sensitive reinforcement learning methods are being thoroughly studied. In this work, we provide a definition of robust reinforcement learning policies and formulate a risk-sensitive reinforcement learning problem to approximate them, by solving an optimization problem with respect to a modified objective based on exponential criteria. In particular, we study a model-free risk-sensitive variation of the widely-used Monte Carlo Policy Gradient algorithm and introduce a novel risk-sensitive online Actor-Critic algorithm based on solving a multiplicative Bellman equation using stochastic approximation updates. Analytical results suggest that the use of exponential criteria generalizes commonly used ad-hoc regularization approaches, improves sample efficiency, and introduces robustness with respect to perturbations in the model parameters and the environment. The implementation, performance, and robustness properties of the proposed methods are evaluated in simulated experiments.
Recent approaches in Incomplete Utterance Rewriting (IUR) fail to capture the source of important words, which is crucial to edit the incomplete utterance, and introduce words from irrelevant utterances. We propose a novel and effective multi-task information interaction framework including context selection, edit matrix construction, and relevance merging to capture the multi-granularity of semantic information. Benefiting from fetching the relevant utterance and figuring out the important words, our approach outperforms existing state-of-the-art models on two benchmark datasets Restoration-200K and CANAND in this field. Code will be provided on \url{//github.com/yanmenxue/QR}.
Mediation analysis is an important statistical tool in many research fields. Its aim is to investigate the mechanism along the causal pathway between an exposure and an outcome. The joint significance test is widely utilized as a prominent statistical approach for examining mediation effects in practical applications. Nevertheless, the limitation of this mediation testing method stems from its conservative Type I error, which reduces its statistical power and imposes certain constraints on its popularity and utility. The proposed solution to address this gap is the adaptive joint significance test for one mediator, a novel data-adaptive test for mediation effect that exhibits significant advancements compared to traditional joint significance test. The proposed method is designed to be user-friendly, eliminating the need for complicated procedures. We have derived explicit expressions for size and power, ensuring the theoretical validity of our approach. Furthermore, we extend the proposed adaptive joint significance tests for small-scale mediation hypotheses with family-wise error rate (FWER) control. Additionally, a novel adaptive Sobel-type approach is proposed for the estimation of confidence intervals for the mediation effects, demonstrating significant advancements over conventional Sobel's confidence intervals in terms of achieving desirable coverage probabilities. Our mediation testing and confidence intervals procedure is evaluated through comprehensive simulations, and compared with numerous existing approaches. Finally, we illustrate the usefulness of our method by analysing three real-world datasets with continuous, binary and time-to-event outcomes, respectively.
While coresets have been growing in terms of their application, barring few exceptions, they have mostly been limited to unsupervised settings. We consider supervised classification problems, and non-decomposable evaluation measures in such settings. We show that stratified uniform sampling based coresets have excellent empirical performance that are backed by theoretical guarantees too. We focus on the F1 score and Matthews Correlation Coefficient, two widely used non-decomposable objective functions that are nontrivial to optimize for and show that uniform coresets attain a lower bound for coreset size, and have good empirical performance, comparable with ``smarter'' coreset construction strategies.
Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.
Representation learning on a knowledge graph (KG) is to embed entities and relations of a KG into low-dimensional continuous vector spaces. Early KG embedding methods only pay attention to structured information encoded in triples, which would cause limited performance due to the structure sparseness of KGs. Some recent attempts consider paths information to expand the structure of KGs but lack explainability in the process of obtaining the path representations. In this paper, we propose a novel Rule and Path-based Joint Embedding (RPJE) scheme, which takes full advantage of the explainability and accuracy of logic rules, the generalization of KG embedding as well as the supplementary semantic structure of paths. Specifically, logic rules of different lengths (the number of relations in rule body) in the form of Horn clauses are first mined from the KG and elaborately encoded for representation learning. Then, the rules of length 2 are applied to compose paths accurately while the rules of length 1 are explicitly employed to create semantic associations among relations and constrain relation embeddings. Besides, the confidence level of each rule is also considered in optimization to guarantee the availability of applying the rule to representation learning. Extensive experimental results illustrate that RPJE outperforms other state-of-the-art baselines on KG completion task, which also demonstrate the superiority of utilizing logic rules as well as paths for improving the accuracy and explainability of representation learning.
The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.
While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.