亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce the new task of clinically meaningful summarisation of social media user timelines, appropriate for mental health monitoring. We develop a novel approach for unsupervised abstractive summarisation that produces a two-layer summary consisting of both high-level information, covering aspects useful to clinical experts, as well as accompanying time sensitive evidence from a user's social media timeline. A key methodological novelty comes from the timeline summarisation component based on a version of hierarchical variational autoencoder (VAE) adapted to represent long texts and guided by LLM-annotated key phrases. The resulting timeline summary is input into a LLM (LLaMA-2) to produce the final summary containing both the high level information, obtained through instruction prompting, as well as corresponding evidence from the user's timeline. We assess the summaries generated by our novel architecture via automatic evaluation against expert written summaries and via human evaluation with clinical experts, showing that timeline summarisation by TH-VAE results in logically coherent summaries rich in clinical utility and superior to LLM-only approaches in capturing changes over time.

相關內容

In algorithms for solving optimization problems constrained to a smooth manifold, retractions are a well-established tool to ensure that the iterates stay on the manifold. More recently, it has been demonstrated that retractions are a useful concept for other computational tasks on manifold as well, including interpolation tasks. In this work, we consider the application of retractions to the numerical integration of differential equations on fixed-rank matrix manifolds. This is closely related to dynamical low-rank approximation (DLRA) techniques. In fact, any retraction leads to a numerical integrator and, vice versa, certain DLRA techniques bear a direct relation with retractions. As an example for the latter, we introduce a new retraction, called KLS retraction, that is derived from the so-called unconventional integrator for DLRA. We also illustrate how retractions can be used to recover known DLRA techniques and to design new ones. In particular, this work introduces two novel numerical integration schemes that apply to differential equations on general manifolds: the accelerated forward Euler (AFE) method and the Projected Ralston--Hermite (PRH) method. Both methods build on retractions by using them as a tool for approximating curves on manifolds. The two methods are proven to have local truncation error of order three. Numerical experiments on classical DLRA examples highlight the advantages and shortcomings of these new methods.

Large Language models (LLMs) have demonstrated significant potential in transforming healthcare by automating tasks such as clinical documentation, information retrieval, and decision support. In this aspect, carefully engineered prompts have emerged as a powerful tool for using LLMs for medical scenarios, e.g., patient clinical scenarios. In this paper, we propose a modified version of the MedQA-USMLE dataset, which is subjective, to mimic real-life clinical scenarios. We explore the Chain of Thought (CoT) reasoning based on subjective response generation for the modified MedQA-USMLE dataset with appropriate LM-driven forward reasoning for correct responses to the medical questions. Keeping in mind the importance of response verification in the medical setting, we utilize a reward training mechanism whereby the language model also provides an appropriate verified response for a particular response to a clinical question. In this regard, we also include human-in-the-loop for different evaluation aspects. We develop better in-contrast learning strategies by modifying the 5-shot-codex-CoT-prompt from arXiv:2207.08143 for the subjective MedQA dataset and developing our incremental-reasoning prompt. Our evaluations show that the incremental reasoning prompt performs better than the modified codex prompt in certain scenarios. We also show that greedy decoding with the incremental reasoning method performs better than other strategies, such as prompt chaining and eliminative reasoning.

Charts, figures, and text derived from data play an important role in decision making, from data-driven policy development to day-to-day choices informed by online articles. Making sense of, or fact-checking, outputs means understanding how they relate to the underlying data. Even for domain experts with access to the source code and data sets, this poses a significant challenge. In this paper we introduce a new program analysis framework which supports interactive exploration of fine-grained I/O relationships directly through computed outputs, making use of dynamic dependence graphs. Our main contribution is a novel notion in data provenance which we call related inputs, a relation of mutual relevance or "cognacy" which arises between inputs when they contribute to common features of the output. Queries of this form allow readers to ask questions like "What outputs use this data element, and what other data elements are used along with it?". We show how Jonsson and Tarski's concept of conjugate operators on Boolean algebras appropriately characterises the notion of cognacy in a dependence graph, and give a procedure for computing related inputs over such a graph.

With the increasing availability of large scale datasets, computational power and tools like automatic differentiation and expressive neural network architectures, sequential data are now often treated in a data-driven way, with a dynamical model trained from the observation data. While neural networks are often seen as uninterpretable black-box architectures, they can still benefit from physical priors on the data and from mathematical knowledge. In this paper, we use a neural network architecture which leverages the long-known Koopman operator theory to embed dynamical systems in latent spaces where their dynamics can be described linearly, enabling a number of appealing features. We introduce methods that enable to train such a model for long-term continuous reconstruction, even in difficult contexts where the data comes in irregularly-sampled time series. The potential for self-supervised learning is also demonstrated, as we show the promising use of trained dynamical models as priors for variational data assimilation techniques, with applications to e.g. time series interpolation and forecasting.

This work explores the dimension reduction problem for Bayesian nonparametric regression and density estimation. More precisely, we are interested in estimating a functional parameter $f$ over the unit ball in $\mathbb{R}^d$, which depends only on a $d_0$-dimensional subspace of $\mathbb{R}^d$, with $d_0 < d$.It is well-known that rescaled Gaussian process priors over the function space achieve smoothness adaptation and posterior contraction with near minimax-optimal rates. Moreover, hierarchical extensions of this approach, equipped with subspace projection, can also adapt to the intrinsic dimension $d_0$ (\cite{Tokdar2011DimensionAdapt}).When the ambient dimension $d$ does not vary with $n$, the minimax rate remains of the order $n^{-\beta/(2\beta +d_0)}$.%When $d$ does not vary with $n$, the order of the minimax rate remains the same regardless of the ambient dimension $d$. However, this is up to multiplicative constants that can become prohibitively large when $d$ grows. The dependences between the contraction rate and the ambient dimension have not been fully explored yet and this work provides a first insight: we let the dimension $d$ grow with $n$ and, by combining the arguments of \cite{Tokdar2011DimensionAdapt} and \cite{Jiang2021VariableSelection}, we derive a growth rate for $d$ that still leads to posterior consistency with minimax rate.The optimality of this growth rate is then discussed.Additionally, we provide a set of assumptions under which consistent estimation of $f$ leads to a correct estimation of the subspace projection, assuming that $d_0$ is known.

With the widespread application of convolutional neural networks (CNNs), the traditional model based denoising algorithms are now outperformed. However, CNNs face two problems. First, they are computationally demanding, which makes their deployment especially difficult for mobile terminals. Second, experimental evidence shows that CNNs often over-smooth regular textures present in images, in contrast to traditional non-local models. In this letter, we propose a solution to both issues by combining a nonlocal algorithm with a lightweight residual CNN. This solution gives full latitude to the advantages of both models. We apply this framework to two GPU implementations of classic nonlocal algorithms (NLM and BM3D) and observe a substantial gain in both cases, performing better than the state-of-the-art with low computational requirements. Our solution is between 10 and 20 times faster than CNNs with equivalent performance and attains higher PSNR. In addition the final method shows a notable gain on images containing complex textures like the ones of the MIT Moire dataset.

During the evolution of large models, performance evaluation is necessarily performed to assess their capabilities and ensure safety before practical application. However, current model evaluations mainly rely on specific tasks and datasets, lacking a united framework for assessing the multidimensional intelligence of large models. In this perspective, we advocate for a comprehensive framework of cognitive science-inspired artificial general intelligence (AGI) tests, aimed at fulfilling the testing needs of large models with enhanced capabilities. The cognitive science-inspired AGI tests encompass the full spectrum of intelligence facets, including crystallized intelligence, fluid intelligence, social intelligence, and embodied intelligence. To assess the multidimensional intelligence of large models, the AGI tests consist of a battery of well-designed cognitive tests adopted from human intelligence tests, and then naturally encapsulates into an immersive virtual community. We propose increasing the complexity of AGI testing tasks commensurate with advancements in large models and emphasizing the necessity for the interpretation of test results to avoid false negatives and false positives. We believe that cognitive science-inspired AGI tests will effectively guide the targeted improvement of large models in specific dimensions of intelligence and accelerate the integration of large models into human society.

Researchers in many fields endeavor to estimate treatment effects by regressing outcome data (Y) on a treatment (D) and observed confounders (X). Even absent unobserved confounding, the regression coefficient on the treatment reports a weighted average of strata-specific treatment effects (Angrist, 1998). Where heterogeneous treatment effects cannot be ruled out, the resulting coefficient is thus not generally equal to the average treatment effect (ATE), and is unlikely to be the quantity of direct scientific or policy interest. The difference between the coefficient and the ATE has led researchers to propose various interpretational, bounding, and diagnostic aids (Humphreys, 2009; Aronow and Samii, 2016; Sloczynski, 2022; Chattopadhyay and Zubizarreta, 2023). We note that the linear regression of Y on D and X can be misspecified when the treatment effect is heterogeneous in X. The "weights of regression", for which we provide a new (more general) expression, simply characterize how the OLS coefficient will depart from the ATE under the misspecification resulting from unmodeled treatment effect heterogeneity. Consequently, a natural alternative to suffering these weights is to address the misspecification that gives rise to them. For investigators committed to linear approaches, we propose relying on the slightly weaker assumption that the potential outcomes are linear in X. Numerous well-known estimators are unbiased for the ATE under this assumption, namely regression-imputation/g-computation/T-learner, regression with an interaction of the treatment and covariates (Lin, 2013), and balancing weights. Any of these approaches avoid the apparent weighting problem of the misspecified linear regression, at an efficiency cost that will be small when there are few covariates relative to sample size. We demonstrate these lessons using simulations in observational and experimental settings.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

北京阿比特科技有限公司