亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Context: The popularity of cloud computing as the primary platform for developing, deploying, and delivering software is largely driven by the promise of cost savings. Therefore, it is surprising that no empirical evidence has been collected to determine whether cost awareness permeates the development process and how it manifests in practice. Objective: This study aims to provide empirical evidence of cost awareness by mining open source repositories of cloud-based applications. The focus is on Infrastructure as Code artifacts that automate software (re)deployment on the cloud. Methods: A systematic search through 152,735 repositories resulted in the selection of 2,010 relevant ones. We then analyzed 538 relevant commits and 208 relevant issues using a combination of inductive and deductive coding. Results: The findings indicate that developers are not only concerned with the cost of their application deployments but also take actions to reduce these costs beyond selecting cheaper cloud services. We also identify research areas for future consideration. Conclusion: Although we focus on a particular Infrastructure as Code technology (Terraform), the findings can be applicable to cloud-based application development in general. The provided empirical grounding can serve developers seeking to reduce costs through service selection, resource allocation, deployment optimization, and other techniques.

相關內容

The IoT and Business Process Management (BPM) communities co-exist in many shared application domains, such as manufacturing and healthcare. The IoT community has a strong focus on hardware, connectivity and data; the BPM community focuses mainly on finding, controlling, and enhancing the structured interactions among the IoT devices in processes. While the field of Process Mining deals with the extraction of process models and process analytics from process event logs, the data produced by IoT sensors often is at a lower granularity than these process-level events. The fundamental questions about extracting and abstracting process-related data from streams of IoT sensor values are: (1) Which sensor values can be clustered together as part of process events?, (2) Which sensor values signify the start and end of such events?, (3) Which sensor values are related but not essential? This work proposes a framework to semi-automatically perform a set of structured steps to convert low-level IoT sensor data into higher-level process events that are suitable for process mining. The framework is meant to provide a generic sequence of abstract steps to guide the event extraction, abstraction, and correlation, with variation points for plugging in specific analysis techniques and algorithms for each step. To assess the completeness of the framework, we present a set of challenges, how they can be tackled through the framework, and an example on how to instantiate the framework in a real-world demonstration from the field of smart manufacturing. Based on this framework, future research can be conducted in a structured manner through refining and improving individual steps.

The rise of Web3 social ecosystems signifies the dawn of a new chapter in digital interaction, offering significant prospects for user engagement and financial advancement. Nonetheless, this progress is shadowed by potential privacy concessions, especially as these platforms frequently merge with existing Web2.0 social media accounts, amplifying data privacy risks for users. In this study, we investigate the nuanced dynamics between user engagement on Web3 social platforms and the consequent privacy concerns. We scrutinize the widespread phenomenon of fabricated activities, which encompasses the establishment of bogus accounts aimed at mimicking popularity and the deliberate distortion of social interactions by some individuals to gain financial rewards. Such deceptive maneuvers not only distort the true measure of the active user base but also amplify privacy threats for all members of the user community. We also find that, notwithstanding their attempts to limit social exposure, users remain entangled in privacy vulnerabilities. The actions of those highly engaged users, albeit often a minority group, can inadvertently breach the privacy of the larger collective. By casting light on the delicate interplay between user engagement, financial motives, and privacy issues, we offer a comprehensive examination of the intrinsic challenges and hazards present in the Web3 social milieu. We highlight the urgent need for more stringent privacy measures and ethical protocols to navigate the complex web of social exchanges and financial ambitions in the rapidly evolving Web3.

Face Recognition Systems (FRS) have increasingly integrated into critical applications, including surveillance and user authentication, highlighting their pivotal role in modern security systems. Recent studies have revealed vulnerabilities in FRS to adversarial (e.g., adversarial patch attacks) and backdoor attacks (e.g., training data poisoning), raising significant concerns about their reliability and trustworthiness. Previous studies primarily focus on traditional adversarial or backdoor attacks, overlooking the resource-intensive or privileged-manipulation nature of such threats, thus limiting their practical generalization, stealthiness, universality and robustness. Correspondingly, in this paper, we delve into the inherent vulnerabilities in FRS through user studies and preliminary explorations. By exploiting these vulnerabilities, we identify a novel attack, facial identity backdoor attack dubbed FIBA, which unveils a potentially more devastating threat against FRS:an enrollment-stage backdoor attack. FIBA circumvents the limitations of traditional attacks, enabling broad-scale disruption by allowing any attacker donning a specific trigger to bypass these systems. This implies that after a single, poisoned example is inserted into the database, the corresponding trigger becomes a universal key for any attackers to spoof the FRS. This strategy essentially challenges the conventional attacks by initiating at the enrollment stage, dramatically transforming the threat landscape by poisoning the feature database rather than the training data.

Context: Quantum software systems represent a new realm in software engineering, utilizing quantum bits (Qubits) and quantum gates (Qgates) to solve the complex problems more efficiently than classical counterparts . Agile software development approaches are considered to address many inherent challenges in quantum software development, but their effective integration remains unexplored Objective: This study investigates key causes of challenges that could hinders the adoption of traditional agile approaches in quantum software projects and develop an Agile Quantum Software Project Success Prediction Model (AQSSPM). Methodology: Firstly, w e identified 19 causes of challenging factors discussed in our previous study, which are potentially impacting agile quantum project success. Secondly, a survey was conducted to collect expert opinions on these causes and applied Genetic Algorithm (GA) with Na i ve Bayes Classifier (NBC) and Logistic Regression (LR) to develop the AQSSPM Results: Utilizing GA with NBC, project success probability improved from 53.17% to 99.68%, with cost reductions from 0.463% to 0.403%. Similarly, GA with LR increased success rates from 55.52% to 98.99%, and costs decreased from 0.496% to 0.409% after 100 iterati ons. Both methods result showed a strong positive correlation (rs=0.955) in causes ranking, with no significant difference between them (t=1.195, p=0.240>0.05). Conclusion: The AQSSPM highlights critical focus areas for efficiently and successfully implementing agile quantum projects considering the cost factor of a particular project

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.

北京阿比特科技有限公司