亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose new differential privacy solutions for when external \emph{invariants} and \emph{integer} constraints are simultaneously enforced on the data product. These requirements arise in real world applications of private data curation, including the public release of the 2020 U.S. Decennial Census. They pose a great challenge to the production of provably private data products with adequate statistical usability. We propose \emph{integer subspace differential privacy} to rigorously articulate the privacy guarantee when data products maintain both the invariants and integer characteristics, and demonstrate the composition and post-processing properties of our proposal. To address the challenge of sampling from a potentially highly restricted discrete space, we devise a pair of unbiased additive mechanisms, the generalized Laplace and the generalized Gaussian mechanisms, by solving the Diophantine equations as defined by the constraints. The proposed mechanisms have good accuracy, with errors exhibiting sub-exponential and sub-Gaussian tail probabilities respectively. To implement our proposal, we design an MCMC algorithm and supply empirical convergence assessment using estimated upper bounds on the total variation distance via $L$-lag coupling. We demonstrate the efficacy of our proposal with applications to a synthetic problem with intersecting invariants, a sensitive contingency table with known margins, and the 2010 Census county-level demonstration data with mandated fixed state population totals.

相關內容

Recent works have shown that selecting an optimal model architecture suited to the differential privacy setting is necessary to achieve the best possible utility for a given privacy budget using differentially private stochastic gradient descent (DP-SGD)(Tramer and Boneh 2020; Cheng et al. 2022). In light of these findings, we empirically analyse how different fairness notions, belonging to distinct classes of statistical fairness criteria (independence, separation and sufficiency), are impacted when one selects a model architecture suitable for DP-SGD, optimized for utility. Using standard datasets from ML fairness literature, we show using a rigorous experimental protocol, that by selecting the optimal model architecture for DP-SGD, the differences across groups concerning the relevant fairness metrics (demographic parity, equalized odds and predictive parity) more often decrease or are negligibly impacted, compared to the non-private baseline, for which optimal model architecture has also been selected to maximize utility. These findings challenge the understanding that differential privacy will necessarily exacerbate unfairness in deep learning models trained on biased datasets.

We study private and robust multi-armed bandits (MABs), where the agent receives Huber's contaminated heavy-tailed rewards and meanwhile needs to ensure differential privacy. We first present its minimax lower bound, characterizing the information-theoretic limit of regret with respect to privacy budget, contamination level and heavy-tailedness. Then, we propose a meta-algorithm that builds on a private and robust mean estimation sub-routine \texttt{PRM} that essentially relies on reward truncation and the Laplace mechanism only. For two different heavy-tailed settings, we give specific schemes of \texttt{PRM}, which enable us to achieve nearly-optimal regret. As by-products of our main results, we also give the first minimax lower bound for private heavy-tailed MABs (i.e., without contamination). Moreover, our two proposed truncation-based \texttt{PRM} achieve the optimal trade-off between estimation accuracy, privacy and robustness. Finally, we support our theoretical results with experimental studies.

The interconnected smart devices and industrial internet of things devices require low-latency communication to fulfill control objectives despite limited resources. In essence, such devices have a time-critical nature but also require a highly accurate data input based on its significance. In this paper, we investigate various coordinated and distributed semantic scheduling schemes with a data significance perspective. In particular, novel algorithms are proposed to analyze the benefit of such schemes for the significance in terms of estimation accuracy. Then, we derive the bounds of the achievable estimation accuracy. Our numerical results showcase the superiority of semantic scheduling policies that adopt an integrated control and communication strategy. In essence, such policies can reduce the weighted sum of mean squared errors compared to traditional policies.

We consider privacy in the context of streaming algorithms for cardinality estimation. We show that a large class of algorithms all satisfy $\epsilon$-differential privacy, so long as (a) the algorithm is combined with a simple down-sampling procedure, and (b) the cardinality of the input stream is $\Omega(k/\epsilon)$. Here, $k$ is a certain parameter of the sketch that is always at most the sketch size in bits, but is typically much smaller. We also show that, even with no modification, algorithms in our class satisfy $(\epsilon, \delta)$-differential privacy, where $\delta$ falls exponentially with the stream cardinality. Our analysis applies to essentially all popular cardinality estimation algorithms, and substantially generalizes and tightens privacy bounds from earlier works.

The paper addresses an optimal ensemble control problem for nonlocal continuity equations on the space of probability measures. We admit the general nonlinear cost functional, and an option to directly control the nonlocal terms of the driving vector field. For this problem, we design a descent method based on Pontryagin's maximum principle (PMP). To this end, we derive a new form of PMP with a decoupled Hamiltonian system. Specifically, we extract the adjoint system of linear nonlocal balance laws on the space of signed measures and prove its well-posedness. As an implementation of the designed descent method, we propose an indirect deterministic numeric algorithm with backtracking. We prove the convergence of the algorithm and illustrate its modus operandi by treating a simple case involving a Kuramoto-type model of a population of interacting oscillators.

We study the relationship between two desiderata of algorithms in statistical inference and machine learning: differential privacy and robustness to adversarial data corruptions. Their conceptual similarity was first observed by Dwork and Lei (STOC 2009), who observed that private algorithms satisfy robustness, and gave a general method for converting robust algorithms to private ones. However, all general methods for transforming robust algorithms into private ones lead to suboptimal error rates. Our work gives the first black-box transformation that converts any adversarially robust algorithm into one that satisfies pure differential privacy. Moreover, we show that for any low-dimensional estimation task, applying our transformation to an optimal robust estimator results in an optimal private estimator. Thus, we conclude that for any low-dimensional task, the optimal error rate for $\varepsilon$-differentially private estimators is essentially the same as the optimal error rate for estimators that are robust to adversarially corrupting $1/\varepsilon$ training samples. We apply our transformation to obtain new optimal private estimators for several high-dimensional tasks, including Gaussian (sparse) linear regression and PCA. Finally, we present an extension of our transformation that leads to approximate differentially private algorithms whose error does not depend on the range of the output space, which is impossible under pure differential privacy.

With continuous outcomes, the average causal effect is typically defined using a contrast of expected potential outcomes. However, in the presence of skewed outcome data, the expectation may no longer be meaningful. In practice the typical approach is to either "ignore or transform" - ignore the skewness altogether or transform the outcome to obtain a more symmetric distribution, although neither approach is entirely satisfactory. Alternatively the causal effect can be redefined as a contrast of median potential outcomes, yet discussion of confounding-adjustment methods to estimate this parameter is limited. In this study we described and compared confounding-adjustment methods to address this gap. The methods considered were multivariable quantile regression, an inverse probability weighted (IPW) estimator, weighted quantile regression and two little-known implementations of g-computation for this problem. Motivated by a cohort investigation in the Longitudinal Study of Australian Children, we conducted a simulation study that found the IPW estimator, weighted quantile regression and g-computation implementations minimised bias when the relevant models were correctly specified, with g-computation additionally minimising the variance. These methods provide appealing alternatives to the common "ignore or transform" approach and multivariable quantile regression, enhancing our capability to obtain meaningful causal effect estimates with skewed outcome data.

This work proposes Fed-GLOSS-DP, a novel approach to privacy-preserving learning that uses synthetic data to train federated models. In our approach, the server recovers an approximation of the global loss landscape in a local neighborhood based on synthetic samples received from the clients. In contrast to previous, point-wise, gradient-based, linear approximation (such as FedAvg), our formulation enables a type of global optimization that is particularly beneficial in non-IID federated settings. We also present how it rigorously complements record-level differential privacy. Extensive results show that our novel formulation gives rise to considerable improvements in terms of convergence speed and communication costs. We argue that our new approach to federated learning can provide a potential path toward reconciling privacy and accountability by sending differentially private, synthetic data instead of gradient updates. The source code will be released upon publication.

While many solutions for privacy-preserving convex empirical risk minimization (ERM) have been developed, privacy-preserving nonconvex ERM remains a challenge. We study nonconvex ERM, which takes the form of minimizing a finite-sum of nonconvex loss functions over a training set. We propose a new differentially private stochastic gradient descent algorithm for nonconvex ERM that achieves strong privacy guarantees efficiently, and provide a tight analysis of its privacy and utility guarantees, as well as its gradient complexity. Our algorithm reduces gradient complexity while improves the best previous utility guarantee given by Wang et al. (NeurIPS 2017). Our experiments on benchmark nonconvex ERM problems demonstrate superior performance in terms of both training cost and utility gains compared with previous differentially private methods using the same privacy budgets.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

北京阿比特科技有限公司