亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies linear reconstruction of partially observed functional data which are recorded on a discrete grid. We propose a novel estimation approach based on approximate factor models with increasing rank taking into account potential covariate information. Whereas alternative reconstruction procedures commonly involve some preliminary smoothing, our method separates the signal from noise and reconstructs missing fragments at once. We establish uniform convergence rates of our estimator and introduce a new method for constructing simultaneous prediction bands for the missing trajectories. A simulation study examines the performance of the proposed methods in finite samples. Finally, a real data application of temperature curves demonstrates that our theory provides a simple and effective method to recover missing fragments.

相關內容

This paper presents a multivariate normal integral expression for the joint survival function of the cumulated components of any multinomial random vector. This result can be viewed as a multivariate analog of Equation (7) from Carter & Pollard (2004), who improved Tusn\'ady's inequality. Our findings are based on a crucial relationship between the joint survival function of the cumulated components of any multinomial random vector and the joint cumulative distribution function of a corresponding Dirichlet distribution. We offer two distinct proofs: the first expands the logarithm of the Dirichlet density, while the second employs Laplace's method applied to the Dirichlet integral.

We develop novel LASSO-based methods for coefficient testing and confidence interval construction in the Gaussian linear model with $n\ge d$. Our methods' finite-sample guarantees are identical to those of their ubiquitous ordinary-least-squares-$t$-test-based analogues, yet have substantially higher power when the true coefficient vector is sparse. In particular, our coefficient test, which we call the $\ell$-test, performs like the one-sided $t$-test (despite not being given any information about the sign) under sparsity, and the corresponding confidence intervals are more than 10% shorter than the standard $t$-test based intervals. The nature of the $\ell$-test directly provides a novel exact adjustment conditional on LASSO selection for post-selection inference, allowing for the construction of post-selection p-values and confidence intervals. None of our methods require resampling or Monte Carlo estimation. We perform a variety of simulations and a real data analysis on an HIV drug resistance data set to demonstrate the benefits of the $\ell$-test. We end with a discussion of how the $\ell$-test may asymptotically apply to a much more general class of parametric models.

Practical parameter identifiability in ODE-based epidemiological models is a known issue, yet one that merits further study. It is essentially ubiquitous due to noise and errors in real data. In this study, to avoid uncertainty stemming from data of unknown quality, simulated data with added noise are used to investigate practical identifiability in two distinct epidemiological models. Particular emphasis is placed on the role of initial conditions, which are assumed unknown, except those that are directly measured. Instead of just focusing on one method of estimation, we use and compare results from various broadly used methods, including maximum likelihood and Markov Chain Monte Carlo (MCMC) estimation. Among other findings, our analysis revealed that the MCMC estimator is overall more robust than the point estimators considered. Its estimates and predictions are improved when the initial conditions of certain compartments are fixed so that the model becomes globally identifiable. For the point estimators, whether fixing or fitting the that are not directly measured improves parameter estimates is model-dependent. Specifically, in the standard SEIR model, fixing the initial condition for the susceptible population S(0) improved parameter estimates, while this was not true when fixing the initial condition of the asymptomatic population in a more involved model. Our study corroborates the change in quality of parameter estimates upon usage of pre-peak or post-peak time-series under consideration. Finally, our examples suggest that in the presence of significantly noisy data, the value of structural identifiability is moot.

Structural identifiability is an important property of parametric ODE models. When conducting an experiment and inferring the parameter value from the time-series data, we want to know if the value is globally, locally, or non-identifiable. Global identifiability of the parameter indicates that there exists only one possible solution to the inference problem, local identifiability suggests that there could be several (but finitely many) possibilities, while non-identifiability implies that there are infinitely many possibilities for the value. Having this information is useful since, one would, for example, only perform inferences for the parameters which are identifiable. Given the current significance and widespread research conducted in this area, we decided to create a database of linear compartment models and their identifiability results. This facilitates the process of checking theorems and conjectures and drawing conclusions on identifiability. By only storing models up to symmetries and isomorphisms, we optimize memory efficiency and reduce query time. We conclude by applying our database to real problems. We tested a conjecture about deleting one leak of the model states in the paper 'Linear compartmental models: Input-output equations and operations that preserve identifiability' by E. Gross et al., and managed to produce a counterexample. We also compute some interesting statistics related to the identifiability of linear compartment model parameters.

The stochastic block model is a canonical model of communities in random graphs. It was introduced in the social sciences and statistics as a model of communities, and in theoretical computer science as an average case model for graph partitioning problems under the name of the ``planted partition model.'' Given a sparse stochastic block model, the two standard inference tasks are: (i) Weak recovery: can we estimate the communities with non trivial overlap with the true communities? (ii) Detection/Hypothesis testing: can we distinguish if the sample was drawn from the block model or from a random graph with no community structure with probability tending to $1$ as the graph size tends to infinity? In this work, we show that for sparse stochastic block models, the two inference tasks are equivalent except at a critical point. That is, weak recovery is information theoretically possible if and only if detection is possible. We thus find a strong connection between these two notions of inference for the model. We further prove that when detection is impossible, an explicit hypothesis test based on low degree polynomials in the adjacency matrix of the observed graph achieves the optimal statistical power. This low degree test is efficient as opposed to the likelihood ratio test, which is not known to be efficient. Moreover, we prove that the asymptotic mutual information between the observed network and the community structure exhibits a phase transition at the weak recovery threshold. Our results are proven in much broader settings including the hypergraph stochastic block models and general planted factor graphs. In these settings we prove that the impossibility of weak recovery implies contiguity and provide a condition which guarantees the equivalence of weak recovery and detection.

The problem of computing posterior functionals in general high-dimensional statistical models with possibly non-log-concave likelihood functions is considered. Based on the proof strategy of [49], but using only local likelihood conditions and without relying on M-estimation theory, nonasymptotic statistical and computational guarantees are provided for a gradient based MCMC algorithm. Given a suitable initialiser, these guarantees scale polynomially in key algorithmic quantities. The abstract results are applied to several concrete statistical models, including density estimation, nonparametric regression with generalised linear models and a canonical statistical non-linear inverse problem from PDEs.

Learning tasks play an increasingly prominent role in quantum information and computation. They range from fundamental problems such as state discrimination and metrology over the framework of quantum probably approximately correct (PAC) learning, to the recently proposed shadow variants of state tomography. However, the many directions of quantum learning theory have so far evolved separately. We propose a general mathematical formalism for describing quantum learning by training on classical-quantum data and then testing how well the learned hypothesis generalizes to new data. In this framework, we prove bounds on the expected generalization error of a quantum learner in terms of classical and quantum information-theoretic quantities measuring how strongly the learner's hypothesis depends on the specific data seen during training. To achieve this, we use tools from quantum optimal transport and quantum concentration inequalities to establish non-commutative versions of decoupling lemmas that underlie recent information-theoretic generalization bounds for classical machine learning. Our framework encompasses and gives intuitively accessible generalization bounds for a variety of quantum learning scenarios such as quantum state discrimination, PAC learning quantum states, quantum parameter estimation, and quantumly PAC learning classical functions. Thereby, our work lays a foundation for a unifying quantum information-theoretic perspective on quantum learning.

This paper presents a platform to facilitate the deployment of applications in Internet of Things (IoT) devices. The platform allows to the programmers to use a Function-as-a-Service programming paradigm that are managed and configured in a Platform-as-a-Service web tool. The tool also allows to establish interoperability between the functions of the applications. The proposed platform obtained faster and easier deployments of the applications and the resource usages of the IoT devices also were lower in relation to a deployment process based in containers of Docker.

We present a method to generate contingency tables that follow loglinear models with prescribed marginal probabilities and dependence structures. We make use of (loglinear) Poisson regression, where the dependence structures, described using odds ratios, are implemented using an offset term. We apply this methodology to carry out simulation studies in the context of population size estimation using dual system and triple system estimators, popular in official statistics. These estimators use contingency tables that summarise the counts of elements enumerated or captured within lists that are linked. The simulation is used to investigate these estimators in the situation that the model assumptions are fulfilled, and the situation that the model assumptions are violated.

We use Stein characterisations to derive new moment-type estimators for the parameters of several truncated multivariate distributions in the i.i.d. case; we also derive the asymptotic properties of these estimators. Our examples include the truncated multivariate normal distribution and truncated products of independent univariate distributions. The estimators are explicit and therefore provide an interesting alternative to the maximum-likelihood estimator (MLE). The quality of these estimators is assessed through competitive simulation studies, in which we compare their behaviour to the performance of the MLE and the score matching approach.

北京阿比特科技有限公司