Data integration is a classical problem in databases, typically decomposed into schema matching, entity matching and data fusion. To solve the latter, it is mostly assumed that ground truth can be determined. However, in general, the data gathering processes in the different sources are imperfect and cannot provide an accurate merging of values. Thus, in the absence of ways to determine ground truth, it is important to at least quantify how far from being internally consistent a dataset is. Hence, we propose definitions of concordant data and define a discordance metric as a way of measuring disagreement to improve decision making based on trustworthiness. We define the discord measurement problem of numerical attributes in which given a set of uncertain raw observations or aggregate results (such as case/hospitalization/death data relevant to COVID-19) and information on the alignment of different conceptualizations of the same reality (e.g., granularities or units), we wish to assess whether the different sources are concordant, or if not, use the discordance metric to quantify how discordant they are. We also define a set of algebraic operators to describe the alignments of different data sources with correctness guarantees, together with two alternative relational database implementations that reduce the problem to linear or quadratic programming. These are evaluated against both COVID-19 and synthetic data, and our experimental results show that discordance measurement can be performed efficiently in realistic situations.
Event logs are invaluable for conducting process mining projects, offering insights into process improvement and data-driven decision-making. However, data quality issues affect the correctness and trustworthiness of these insights, making preprocessing tasks a necessity. Despite the recognized importance, the execution of preprocessing tasks remains ad-hoc, lacking support. This paper presents a systematic literature review that establishes a comprehensive repository of preprocessing tasks and their usage in case studies. We identify six high-level and 20 low-level preprocessing tasks in case studies. Log filtering, transformation, and abstraction are commonly used, while log enriching, integration, and reduction are less frequent. These results can be considered a first step in contributing to more structured, transparent event log preprocessing, enhancing process mining reliability.
Analysis of higher-order organizations, usually small connected subgraphs called motifs, is a fundamental task on complex networks. This paper studies a new problem of testing higher-order clusterability: given query access to an undirected graph, can we judge whether this graph can be partitioned into a few clusters of highly-connected motifs? This problem is an extension of the former work proposed by Czumaj et al. (STOC' 15), who recognized cluster structure on graphs using the framework of property testing. In this paper, a good graph cluster on high dimensions is first defined for higher-order clustering. Then, query lower bound is given for testing whether this kind of good cluster exists. Finally, an optimal sublinear-time algorithm is developed for testing clusterability based on triangles.
Preserving individual privacy while enabling collaborative data sharing is crucial for organizations. Synthetic data generation is one solution, producing artificial data that mirrors the statistical properties of private data. While numerous techniques have been devised under differential privacy, they predominantly assume data is centralized. However, data is often distributed across multiple clients in a federated manner. In this work, we initiate the study of federated synthetic tabular data generation. Building upon a SOTA central method known as AIM, we present DistAIM and FLAIM. We show it is straightforward to distribute AIM, extending a recent approach based on secure multi-party computation which necessitates additional overhead, making it less suited to federated scenarios. We then demonstrate that naively federating AIM can lead to substantial degradation in utility under the presence of heterogeneity. To mitigate both issues, we propose an augmented FLAIM approach that maintains a private proxy of heterogeneity. We simulate our methods across a range of benchmark datasets under different degrees of heterogeneity and show this can improve utility while reducing overhead.
Robots are integrating more huge-size models to enrich functions and improve accuracy, which leads to out-of-control computing pressure. And thus robots are encountering bottlenecks in computing power and battery capacity. Fog or cloud robotics is one of the most anticipated theories to address these issues. Approaches of cloud robotics have developed from system-level to node-level. However, the present node-level systems are not flexible enough to dynamically adapt to changing conditions. To address this, we present ElasticROS, which evolves the present node-level systems into an algorithm-level one. ElasticROS is based on ROS and ROS2. For fog and cloud robotics, it is the first robot operating system with algorithm-level collaborative computing. ElasticROS develops elastic collaborative computing to achieve adaptability to dynamic conditions. The collaborative computing algorithm is the core and challenge of ElasticROS. We abstract the problem and then propose an algorithm named ElasAction to address. It is a dynamic action decision algorithm based on online learning, which determines how robots and servers cooperate. The algorithm dynamically updates parameters to adapt to changes of conditions where the robot is currently in. It achieves elastically distributing of computing tasks to robots and servers according to configurations. In addition, we prove that the regret upper bound of the ElasAction is sublinear, which guarantees its convergence and thus enables ElasticROS to be stable in its elasticity. Finally, we conducted experiments with ElasticROS on common tasks of robotics, including SLAM, grasping and human-robot dialogue, and then measured its performances in latency, CPU usage and power consumption. The algorithm-level ElasticROS performs significantly better than the present node-level system.
Federated Learning (FL) is a machine learning paradigm, which enables multiple and decentralized clients to collaboratively train a model under the orchestration of a central aggregator. Traditional FL solutions rely on the trust assumption of the centralized aggregator, which forms cohorts of clients in a fair and honest manner. However, a malicious aggregator, in reality, could abandon and replace the client's training models, or launch Sybil attacks to insert fake clients. Such malicious behaviors give the aggregator more power to control clients in the FL setting and determine the final training results. In this work, we introduce zkFL, which leverages zero-knowledge proofs (ZKPs) to tackle the issue of a malicious aggregator during the training model aggregation process. To guarantee the correct aggregation results, the aggregator needs to provide a proof per round. The proof can demonstrate to the clients that the aggregator executes the intended behavior faithfully. To further reduce the verification cost of clients, we employ a blockchain to handle the proof in a zero-knowledge way, where miners (i.e., the nodes validating and maintaining the blockchain data) can verify the proof without knowing the clients' local and aggregated models. The theoretical analysis and empirical results show that zkFL can achieve better security and privacy than traditional FL, without modifying the underlying FL network structure or heavily compromising the training speed.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
Machine Learning has been the quintessential solution for many AI problems, but learning is still heavily dependent on the specific training data. Some learning models can be incorporated with a prior knowledge in the Bayesian set up, but these learning models do not have the ability to access any organised world knowledge on demand. In this work, we propose to enhance learning models with world knowledge in the form of Knowledge Graph (KG) fact triples for Natural Language Processing (NLP) tasks. Our aim is to develop a deep learning model that can extract relevant prior support facts from knowledge graphs depending on the task using attention mechanism. We introduce a convolution-based model for learning representations of knowledge graph entity and relation clusters in order to reduce the attention space. We show that the proposed method is highly scalable to the amount of prior information that has to be processed and can be applied to any generic NLP task. Using this method we show significant improvement in performance for text classification with News20, DBPedia datasets and natural language inference with Stanford Natural Language Inference (SNLI) dataset. We also demonstrate that a deep learning model can be trained well with substantially less amount of labeled training data, when it has access to organised world knowledge in the form of knowledge graph.