Retrieval-augmented language models (RALMs) represent a substantial advancement in the capabilities of large language models, notably in reducing factual hallucination by leveraging external knowledge sources. However, the reliability of the retrieved information is not always guaranteed. The retrieval of irrelevant data can lead to misguided responses, and potentially causing the model to overlook its inherent knowledge, even when it possesses adequate information to address the query. Moreover, standard RALMs often struggle to assess whether they possess adequate knowledge, both intrinsic and retrieved, to provide an accurate answer. In situations where knowledge is lacking, these systems should ideally respond with "unknown" when the answer is unattainable. In response to these challenges, we introduces Chain-of-Noting (CoN), a novel approach aimed at improving the robustness of RALMs in facing noisy, irrelevant documents and in handling unknown scenarios. The core idea of CoN is to generate sequential reading notes for retrieved documents, enabling a thorough evaluation of their relevance to the given question and integrating this information to formulate the final answer. We employed ChatGPT to create training data for CoN, which was subsequently trained on an LLaMa-2 7B model. Our experiments across four open-domain QA benchmarks show that RALMs equipped with CoN significantly outperform standard RALMs. Notably, CoN achieves an average improvement of +7.9 in EM score given entirely noisy retrieved documents and +10.5 in rejection rates for real-time questions that fall outside the pre-training knowledge scope.
The deployment of multimodal large language models (MLLMs) has brought forth a unique vulnerability: susceptibility to malicious attacks through visual inputs. We delve into the novel challenge of defending MLLMs against such attacks. We discovered that images act as a "foreign language" that is not considered during alignment, which can make MLLMs prone to producing harmful responses. Unfortunately, unlike the discrete tokens considered in text-based LLMs, the continuous nature of image signals presents significant alignment challenges, which poses difficulty to thoroughly cover the possible scenarios. This vulnerability is exacerbated by the fact that open-source MLLMs are predominantly fine-tuned on limited image-text pairs that is much less than the extensive text-based pretraining corpus, which makes the MLLMs more prone to catastrophic forgetting of their original abilities during explicit alignment tuning. To tackle these challenges, we introduce MLLM-Protector, a plug-and-play strategy combining a lightweight harm detector and a response detoxifier. The harm detector's role is to identify potentially harmful outputs from the MLLM, while the detoxifier corrects these outputs to ensure the response stipulates to the safety standards. This approach effectively mitigates the risks posed by malicious visual inputs without compromising the model's overall performance. Our results demonstrate that MLLM-Protector offers a robust solution to a previously unaddressed aspect of MLLM security.
Video moment retrieval (MR) and highlight detection (HD) based on natural language queries are two highly related tasks, which aim to obtain relevant moments within videos and highlight scores of each video clip. Recently, several methods have been devoted to building DETR-based networks to solve both MR and HD jointly. These methods simply add two separate task heads after multi-modal feature extraction and feature interaction, achieving good performance. Nevertheless, these approaches underutilize the reciprocal relationship between two tasks. In this paper, we propose a task-reciprocal transformer based on DETR (TR-DETR) that focuses on exploring the inherent reciprocity between MR and HD. Specifically, a local-global multi-modal alignment module is first built to align features from diverse modalities into a shared latent space. Subsequently, a visual feature refinement is designed to eliminate query-irrelevant information from visual features for modal interaction. Finally, a task cooperation module is constructed to refine the retrieval pipeline and the highlight score prediction process by utilizing the reciprocity between MR and HD. Comprehensive experiments on QVHighlights, Charades-STA and TVSum datasets demonstrate that TR-DETR outperforms existing state-of-the-art methods. Codes are available at \url{//github.com/mingyao1120/TR-DETR}.
Large vision-language models (LVLMs) have demonstrated their incredible capability in image understanding and response generation. However, this rich visual interaction also makes LVLMs vulnerable to adversarial examples. In this paper, we formulate a novel and practical gray-box attack scenario that the adversary can only access the visual encoder of the victim LVLM, without the knowledge of its prompts (which are often proprietary for service providers and not publicly available) and its underlying large language model (LLM). This practical setting poses challenges to the cross-prompt and cross-model transferability of targeted adversarial attack, which aims to confuse the LVLM to output a response that is semantically similar to the attacker's chosen target text. To this end, we propose an instruction-tuned targeted attack (dubbed InstructTA) to deliver the targeted adversarial attack on LVLMs with high transferability. Initially, we utilize a public text-to-image generative model to "reverse" the target response into a target image, and employ GPT-4 to infer a reasonable instruction $\boldsymbol{p}^\prime$ from the target response. We then form a local surrogate model (sharing the same visual encoder with the victim LVLM) to extract instruction-aware features of an adversarial image example and the target image, and minimize the distance between these two features to optimize the adversarial example. To further improve the transferability, we augment the instruction $\boldsymbol{p}^\prime$ with instructions paraphrased from an LLM. Extensive experiments demonstrate the superiority of our proposed method in targeted attack performance and transferability.
This work pioneers evaluating emergent planning capabilities based on situational awareness in large language models. We contribute (i) novel benchmarks and metrics for standardized assessment; (ii) a unique dataset to spur progress; and (iii) demonstrations that prompting and multi-agent schemes significantly enhance planning performance in context-sensitive planning tasks. Positioning this within a situated agent and automated planning research, we highlight inherent reliability challenges--efficiently mapping world states to actions without environmental guidance remains open despite simulated domain advances. Although out-of-scope, limitations around validation methodology and data availability indicate exciting directions, including fine-tuning on expanded planning corpora and optimizations for triggering fast latent planning. By conclusively demonstrating current methods' promise and limitations via rigorous comparison, we catalyze investigating reliable goal-directed reasoning for situated agents.
As large language models (LLM) evolve in their capabilities, various recent studies have tried to quantify their behavior using psychological tools created to study human behavior. One such example is the measurement of "personality" of LLMs using self-assessment personality tests developed to measure human personality. Yet almost none of these works verify the applicability of these tests on LLMs. In this paper, we analyze the reliability of LLM personality scores obtained from self-assessment personality tests using two simple experiments. We first introduce the property of prompt sensitivity, where three semantically equivalent prompts representing three intuitive ways of administering self-assessment tests on LLMs are used to measure the personality of the same LLM. We find that all three prompts lead to very different personality scores, a difference that is statistically significant for all traits in a large majority of scenarios. We then introduce the property of option-order symmetry for personality measurement of LLMs. Since most of the self-assessment tests exist in the form of multiple choice question (MCQ) questions, we argue that the scores should also be robust to not just the prompt template but also the order in which the options are presented. This test unsurprisingly reveals that the self-assessment test scores are not robust to the order of the options. These simple tests, done on ChatGPT and three Llama2 models of different sizes, show that self-assessment personality tests created for humans are unreliable measures of personality in LLMs.
With the continuous growth in the number of parameters of transformer-based pretrained language models (PLMs), particularly the emergence of large language models (LLMs) with billions of parameters, many natural language processing (NLP) tasks have demonstrated remarkable success. However, the enormous size and computational demands of these models pose significant challenges for adapting them to specific downstream tasks, especially in environments with limited computational resources. Parameter Efficient Fine-Tuning (PEFT) offers an effective solution by reducing the number of fine-tuning parameters and memory usage while achieving comparable performance to full fine-tuning. The demands for fine-tuning PLMs, especially LLMs, have led to a surge in the development of PEFT methods, as depicted in Fig. 1. In this paper, we present a comprehensive and systematic review of PEFT methods for PLMs. We summarize these PEFT methods, discuss their applications, and outline future directions. Furthermore, we conduct experiments using several representative PEFT methods to better understand their effectiveness in parameter efficiency and memory efficiency. By offering insights into the latest advancements and practical applications, this survey serves as an invaluable resource for researchers and practitioners seeking to navigate the challenges and opportunities presented by PEFT in the context of PLMs.
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.
Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.