Group synchronization refers to estimating a collection of group elements from the noisy pairwise measurements. Such a nonconvex problem has received much attention from numerous scientific fields including computer vision, robotics, and cryo-electron microscopy. In this paper, we focus on the orthogonal group synchronization problem with general additive noise models under incomplete measurements, which is much more general than the commonly considered setting of complete measurements. Characterizations of the orthogonal group synchronization problem are given from perspectives of optimality conditions as well as fixed points of the projected gradient ascent method which is also known as the generalized power method (GPM). It is well worth noting that these results still hold even without generative models. In the meantime, we derive the local error bound property for the orthogonal group synchronization problem which is useful for the convergence rate analysis of different algorithms and can be of independent interest. Finally, we prove the linear convergence result of the GPM to a global maximizer under a general additive noise model based on the established local error bound property. Our theoretical convergence result holds under several deterministic conditions which can cover certain cases with adversarial noise, and as an example we specialize it to the setting of the Erd\"os-R\'enyi measurement graph and Gaussian noise.
Orthogonal polynomials of several variables have a vector-valued three-term recurrence relation, much like the corresponding one-dimensional relation. This relation requires only knowledge of certain recurrence matrices, and allows simple and stable evaluation of multivariate orthogonal polynomials. In the univariate case, various algorithms can evaluate the recurrence coefficients given the ability to compute polynomial moments, but such a procedure is absent in multiple dimensions. We present a new Multivariate Stieltjes (MS) algorithm that fills this gap in the multivariate case, allowing computation of recurrence matrices assuming moments are available. The algorithm is essentially explicit in two and three dimensions, but requires the numerical solution to a non-convex problem in more than three dimensions. Compared to direct Gram-Schmidt-type orthogonalization, we demonstrate on several examples in up to three dimensions that the MS algorithm is far more stable, and allows accurate computation of orthogonal bases in the multivariate setting, in contrast to direct orthogonalization approaches.
This work shows that a diverse collection of linear optimization methods, when run on general data, fail to overfit, despite lacking any explicit constraints or regularization: with high probability, their trajectories stay near the curve of optimal constrained solutions over the population distribution. This analysis is powered by an elementary but flexible proof scheme which can handle many settings, summarized as follows. Firstly, the data can be general: unlike other implicit bias works, it need not satisfy large margin or other structural conditions, and moreover can arrive sequentially IID, sequentially following a Markov chain, as a batch, and lastly it can have heavy tails. Secondly, while the main analysis is for mirror descent, rates are also provided for the Temporal-Difference fixed-point method from reinforcement learning; all prior high probability analyses in these settings required bounded iterates, bounded updates, bounded noise, or some equivalent. Thirdly, the losses are general, and for instance the logistic and squared losses can be handled simultaneously, unlike other implicit bias works. In all of these settings, not only is low population error guaranteed with high probability, but moreover low sample complexity is guaranteed so long as there exists any low-complexity near-optimal solution, even if the global problem structure and in particular global optima have high complexity.
Min-max optimization problems arise in several key machine learning setups, including adversarial learning and generative modeling. In their general form, in absence of convexity/concavity assumptions, finding pure equilibria of the underlying two-player zero-sum game is computationally hard [Daskalakis et al., 2021]. In this work we focus instead in finding mixed equilibria, and consider the associated lifted problem in the space of probability measures. By adding entropic regularization, our main result establishes global convergence towards the global equilibrium by using simultaneous gradient ascent-descent with respect to the Wasserstein metric -- a dynamics that admits efficient particle discretization in high-dimensions, as opposed to entropic mirror descent. We complement this positive result with a related entropy-regularized loss which is not bilinear but still convex-concave in the Wasserstein geometry, and for which simultaneous dynamics do not converge yet timescale separation does. Taken together, these results showcase the benign geometry of bilinear games in the space of measures, enabling particle dynamics with global qualitative convergence guarantees.
A method for quasistatic cohesive fracture is introduced that uses an alternating direction method of multipliers (ADMM) to implement an energy approach to cohesive fracture. The ADMM algorithm minimizes a non-smooth, non-convex potential functional at each strain increment to predict the evolution of a cohesive-elastic system. The optimization problem bypasses the explicit stress criterion of force-based (Newtonian) methods, which interferes with Newton iterations impeding convergence. The model is extended with an extrapolation method that significantly reduces the computation time of the sequence of optimizations. The ADMM algorithm is experimentally shown to have nearly linear time complexity and fast iteration times, allowing it to simulate much larger problems than were previously feasible. The effectiveness, as well as the insensitivity of the algorithm to its numerical parameters is demonstrated through examples. It is shown that the Lagrange multiplier method of ADMM is more effective than earlier Nitsche and continuation methods for quasistatic problems. Close spaced minima are identified in complicated microstructures and their effect discussed.
We propose an efficient numerical method for computing natural gradient descent directions with respect to a generic metric in the state space. Our technique relies on representing the natural gradient direction as a solution to a standard least-squares problem. Hence, instead of calculating, storing, or inverting the information matrix directly, we apply efficient methods from numerical linear algebra to solve this least-squares problem. We treat both scenarios where the derivative of the state variable with respect to the parameter is either explicitly known or implicitly given through constraints. We apply the QR decomposition to solve the least-squares problem in the former case and utilize the adjoint-state method to compute the natural gradient descent direction in the latter case. As a result, we can reliably compute several natural gradient descents, including the Wasserstein natural gradient, for a large-scale parameter space with thousands of dimensions, which was believed to be out of reach. Finally, our numerical results shed light on the qualitative differences among the standard gradient descent method and various natural gradient descent methods based on different metric spaces in large-scale nonconvex optimization problems.
In this paper, we study the convergence properties of off-policy policy improvement algorithms with state-action density ratio correction under function approximation setting, where the objective function is formulated as a max-max-min optimization problem. We characterize the bias of the learning objective and present two strategies with finite-time convergence guarantees. In our first strategy, we present algorithm P-SREDA with convergence rate $O(\epsilon^{-3})$, whose dependency on $\epsilon$ is optimal. In our second strategy, we propose a new off-policy actor-critic style algorithm named O-SPIM. We prove that O-SPIM converges to a stationary point with total complexity $O(\epsilon^{-4})$, which matches the convergence rate of some recent actor-critic algorithms in the on-policy setting.
Stochastic approximation algorithms are iterative procedures which are used to approximate a target value in an environment where the target is unknown and direct observations are corrupted by noise. These algorithms are useful, for instance, for root-finding and function minimization when the target function or model is not directly known. Originally introduced in a 1951 paper by Robbins and Monro, the field of Stochastic approximation has grown enormously and has come to influence application domains from adaptive signal processing to artificial intelligence. As an example, the Stochastic Gradient Descent algorithm which is ubiquitous in various subdomains of Machine Learning is based on stochastic approximation theory. In this paper, we give a formal proof (in the Coq proof assistant) of a general convergence theorem due to Aryeh Dvoretzky, which implies the convergence of important classical methods such as the Robbins-Monro and the Kiefer-Wolfowitz algorithms. In the process, we build a comprehensive Coq library of measure-theoretic probability theory and stochastic processes.
The theory of reinforcement learning currently suffers from a mismatch between its empirical performance and the theoretical characterization of its performance, with consequences for, e.g., the understanding of sample efficiency, safety, and robustness. The linear quadratic regulator with unknown dynamics is a fundamental reinforcement learning setting with significant structure in its dynamics and cost function, yet even in this setting there is a gap between the best known regret lower-bound of $\Omega_p(\sqrt{T})$ and the best known upper-bound of $O_p(\sqrt{T}\,\text{polylog}(T))$. The contribution of this paper is to close that gap by establishing a novel regret upper-bound of $O_p(\sqrt{T})$. Our proof is constructive in that it analyzes the regret of a concrete algorithm, and simultaneously establishes an estimation error bound on the dynamics of $O_p(T^{-1/4})$ which is also the first to match the rate of a known lower-bound. The two keys to our improved proof technique are (1) a more precise upper- and lower-bound on the system Gram matrix and (2) a self-bounding argument for the expected estimation error of the optimal controller.
Algebraic methods for the design of series of maximum distance separable (MDS) linear block and convolutional codes to required specifications and types are presented. Algorithms are given to design codes to required rate and required error-correcting capability and required types. Infinite series of block codes with rate approaching a given rational $R$ with $0<R<1$ and relative distance over length approaching $(1-R)$ are designed. These can be designed over fields of given characteristic $p$ or over fields of prime order and can be specified to be of a particular type such as (i) dual-containing under Euclidean inner product, (ii) dual-containing under Hermitian inner product, (iii) quantum error-correcting, (iv) linear complementary dual (LCD). Convolutional codes to required rate and distance and infinite series of convolutional codes with rate approaching a given rational $R$ and distance over length approaching $2(1-R)$ are designed. The designs are algebraic and properties, including distances, are shown algebraically. Algebraic explicit efficient decoding methods are referenced.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.