We aim to understand the extent to which the noise distribution in a planted signal-plus-noise problem impacts its computational complexity. To that end, we consider the planted clique and planted dense subgraph problems, but in a different ambient graph. Instead of Erd\H{o}s-R\'enyi $G(n,p)$, which has independent edges, we take the ambient graph to be the \emph{random graph with triangles} (RGT) obtained by adding triangles to $G(n,p)$. We show that the RGT can be efficiently mapped to the corresponding $G(n,p)$, and moreover, that the planted clique (or dense subgraph) is approximately preserved under this mapping. This constitutes the first average-case reduction transforming dependent noise to independent noise. Together with the easier direction of mapping the ambient graph from Erd\H{o}s-R\'enyi to RGT, our results yield a strong equivalence between models. In order to prove our results, we develop a new general framework for reasoning about the validity of average-case reductions based on \emph{low sensitivity to perturbations}.
Online computation is a concept to model uncertainty where not all information on a problem instance is known in advance. An online algorithm receives requests which reveal the instance piecewise and has to respond with irrevocable decisions. Often, an adversary is assumed that constructs the instance knowing the deterministic behavior of the algorithm. Thus, the adversary is able to tailor the input to any online algorithm. From a game theoretical point of view, the adversary and the online algorithm are players in an asymmetric two-player game. To overcome this asymmetry, the online algorithm is equipped with an isomorphic copy of the graph, which is referred to as unlabeled map. By applying the game theoretical perspective on online graph problems, where the solution is a subset of the vertices, we analyze the complexity of these online vertex subset games. For this, we introduce a framework for reducing online vertex subset games from TQBF. This framework is based on gadget reductions from 3-SATISFIABILITY to the corresponding offline problem. We further identify a set of rules for extending the 3-SATISFIABILITY-reduction and provide schemes for additional gadgets which assure that these rules are fulfilled. By extending the gadget reduction of the vertex subset problem with these additional gadgets, we obtain a reduction for the corresponding online vertex subset game. At last, we provide example reductions for online vertex subset games based on VERTEX COVER, INDEPENDENT SET, and DOMINATING SET, proving that they are PSPACE-complete. Thus, this paper establishes that the online version with a map of NP-complete vertex subset problems form a large class of PSPACE-complete problems.
We develop a flexible stochastic approximation framework for analyzing the long-run behavior of learning in games (both continuous and finite). The proposed analysis template incorporates a wide array of popular learning algorithms, including gradient-based methods, the exponential/multiplicative weights algorithm for learning in finite games, optimistic and bandit variants of the above, etc. In addition to providing an integrated view of these algorithms, our framework further allows us to obtain several new convergence results, both asymptotic and in finite time, in both continuous and finite games. Specifically, we provide a range of criteria for identifying classes of Nash equilibria and sets of action profiles that are attracting with high probability, and we also introduce the notion of coherence, a game-theoretic property that includes strict and sharp equilibria, and which leads to convergence in finite time. Importantly, our analysis applies to both oracle-based and bandit, payoff-based methods - that is, when players only observe their realized payoffs.
In this paper, we devise a scheme for kernelizing, in sublinear space and polynomial time, various problems on planar graphs. The scheme exploits planarity to ensure that the resulting algorithms run in polynomial time and use O((sqrt(n) + k) log n) bits of space, where n is the number of vertices in the input instance and k is the intended solution size. As examples, we apply the scheme to Dominating Set and Vertex Cover. For Dominating Set, we also show that a well-known kernelization algorithm due to Alber et al. (JACM 2004) can be carried out in polynomial time and space O(k log n). Along the way, we devise restricted-memory procedures for computing region decompositions and approximating the aforementioned problems, which might be of independent interest.
The chain graph model admits both undirected and directed edges in one graph, where symmetric conditional dependencies are encoded via undirected edges and asymmetric causal relations are encoded via directed edges. Though frequently encountered in practice, the chain graph model has been largely under investigated in literature, possibly due to the lack of identifiability conditions between undirected and directed edges. In this paper, we first establish a set of novel identifiability conditions for the Gaussian chain graph model, exploiting a low rank plus sparse decomposition of the precision matrix. Further, an efficient learning algorithm is built upon the identifiability conditions to fully recover the chain graph structure. Theoretical analysis on the proposed method is conducted, assuring its asymptotic consistency in recovering the exact chain graph structure. The advantage of the proposed method is also supported by numerical experiments on both simulated examples and a real application on the Standard & Poor 500 index data.
We consider a general class of nonsmooth optimal control problems with partial differential equation (PDE) constraints, which are very challenging due to its nonsmooth objective functionals and the resulting high-dimensional and ill-conditioned systems after discretization. We focus on the application of a primal-dual method, with which different types of variables can be treated individually and thus its main computation at each iteration only requires solving two PDEs. Our target is to accelerate the primal-dual method with either larger step sizes or operator learning techniques. For the accelerated primal-dual method with larger step sizes, its convergence can be still proved rigorously while it numerically accelerates the original primal-dual method in a simple and universal way. For the operator learning acceleration, we construct deep neural network surrogate models for the involved PDEs. Once a neural operator is learned, solving a PDE requires only a forward pass of the neural network, and the computational cost is thus substantially reduced. The accelerated primal-dual method with operator learning is mesh-free, numerically efficient, and scalable to different types of PDEs. The acceleration effectiveness of these two techniques is promisingly validated by some preliminary numerical results.
Do neural networks, trained on well-understood algorithmic tasks, reliably rediscover known algorithms for solving those tasks? Several recent studies, on tasks ranging from group arithmetic to in-context linear regression, have suggested that the answer is yes. Using modular addition as a prototypical problem, we show that algorithm discovery in neural networks is sometimes more complex. Small changes to model hyperparameters and initializations can induce the discovery of qualitatively different algorithms from a fixed training set, and even parallel implementations of multiple such algorithms. Some networks trained to perform modular addition implement a familiar Clock algorithm; others implement a previously undescribed, less intuitive, but comprehensible procedure which we term the Pizza algorithm, or a variety of even more complex procedures. Our results show that even simple learning problems can admit a surprising diversity of solutions, motivating the development of new tools for characterizing the behavior of neural networks across their algorithmic phase space.
In order to solve tasks like uncertainty quantification or hypothesis tests in Bayesian imaging inverse problems, we often have to draw samples from the arising posterior distribution. For the usually log-concave but high-dimensional posteriors, Markov chain Monte Carlo methods based on time discretizations of Langevin diffusion are a popular tool. If the potential defining the distribution is non-smooth, these discretizations are usually of an implicit form leading to Langevin sampling algorithms that require the evaluation of proximal operators. For some of the potentials relevant in imaging problems this is only possible approximately using an iterative scheme. We investigate the behaviour of a proximal Langevin algorithm under the presence of errors in the evaluation of proximal mappings. We generalize existing non-asymptotic and asymptotic convergence results of the exact algorithm to our inexact setting and quantify the bias between the target and the algorithm's stationary distribution due to the errors. We show that the additional bias stays bounded for bounded errors and converges to zero for decaying errors in a strongly convex setting. We apply the inexact algorithm to sample numerically from the posterior of typical imaging inverse problems in which we can only approximate the proximal operator by an iterative scheme and validate our theoretical convergence results.
Planted Dense Subgraph (PDS) problem is a prototypical problem with a computational-statistical gap. It also exhibits an intriguing additional phenomenon: different tasks, such as detection or recovery, appear to have different computational limits. A detection-recovery gap for PDS was substantiated in the form of a precise conjecture given by Chen and Xu (2014) (based on the parameter values for which a convexified MLE succeeds) and then shown to hold for low-degree polynomial algorithms by Schramm and Wein (2022) and for MCMC algorithms for Ben Arous et al. (2020). In this paper, we demonstrate that a slight variation of the Planted Clique Hypothesis with secret leakage (introduced in Brennan and Bresler (2020)), implies a detection-recovery gap for PDS. In the same vein, we also obtain a sharp lower bound for refutation, yielding a detection-refutation gap. Our methods build on the framework of Brennan and Bresler (2020) to construct average-case reductions mapping secret leakage Planted Clique to appropriate target problems.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.