A holistic understanding of object properties across diverse sensory modalities (e.g., visual, audio, and haptic) is essential for tasks ranging from object categorization to complex manipulation. Drawing inspiration from cognitive science studies that emphasize the significance of multi-sensory integration in human perception, we introduce MOSAIC (Multi-modal Object property learning with Self-Attention and Integrated Comprehension), a novel framework designed to facilitate the learning of unified multi-sensory object property representations. While it is undeniable that visual information plays a prominent role, we acknowledge that many fundamental object properties extend beyond the visual domain to encompass attributes like texture, mass distribution, or sounds, which significantly influence how we interact with objects. In MOSAIC, we leverage this profound insight by distilling knowledge from the extensive pre-trained Contrastive Language-Image Pre-training (CLIP) model, aligning these representations not only across vision but also haptic and auditory sensory modalities. Through extensive experiments on a dataset where a humanoid robot interacts with 100 objects across 10 exploratory behaviors, we demonstrate the versatility of MOSAIC in two task families: object categorization and object-fetching tasks. Our results underscore the efficacy of MOSAIC's unified representations, showing competitive performance in category recognition through a simple linear probe setup and excelling in the fetch object task under zero-shot transfer conditions. This work pioneers the application of CLIP-based sensory grounding in robotics, promising a significant leap in multi-sensory perception capabilities for autonomous systems. We have released the code, datasets, and additional results: //github.com/gtatiya/MOSAIC.
Person search (PS) is a challenging computer vision problem where the objective is to achieve joint optimization for pedestrian detection and re-identification (ReID). Although previous advancements have shown promising performance in the field under fully and weakly supervised learning fashion, there exists a major gap in investigating the domain adaptation ability of PS models. In this paper, we propose a diligent domain adaptive mixer (DDAM) for person search (DDAP-PS) framework that aims to bridge a gap to improve knowledge transfer from the labeled source domain to the unlabeled target domain. Specifically, we introduce a novel DDAM module that generates moderate mixed-domain representations by combining source and target domain representations. The proposed DDAM module encourages domain mixing to minimize the distance between the two extreme domains, thereby enhancing the ReID task. To achieve this, we introduce two bridge losses and a disparity loss. The objective of the two bridge losses is to guide the moderate mixed-domain representations to maintain an appropriate distance from both the source and target domain representations. The disparity loss aims to prevent the moderate mixed-domain representations from being biased towards either the source or target domains, thereby avoiding overfitting. Furthermore, we address the conflict between the two subtasks, localization and ReID, during domain adaptation. To handle this cross-task conflict, we forcefully decouple the norm-aware embedding, which aids in better learning of the moderate mixed-domain representation. We conduct experiments to validate the effectiveness of our proposed method. Our approach demonstrates favorable performance on the challenging PRW and CUHK-SYSU datasets. Our source code is publicly available at \url{//github.com/mustansarfiaz/DDAM-PS}.
Generative models for network time series (also known as dynamic graphs) have tremendous potential in fields such as epidemiology, biology and economics, where complex graph-based dynamics are core objects of study. Designing flexible and scalable generative models is a very challenging task due to the high dimensionality of the data, as well as the need to represent temporal dependencies and marginal network structure. Here we introduce DAMNETS, a scalable deep generative model for network time series. DAMNETS outperforms competing methods on all of our measures of sample quality, over both real and synthetic data sets.
The graph convolutional networks (GCNs) have been applied to model the physically connected and non-local relations among human joints for 3D human pose estimation (HPE). In addition, the purely Transformer-based models recently show promising results in video-based 3D HPE. However, the single-frame method still needs to model the physically connected relations among joints because the feature representations transformed only by global relations via the Transformer neglect information on the human skeleton. To deal with this problem, we propose a novel method in which the Transformer encoder and GCN blocks are alternately stacked, namely AMPose, to combine the global and physically connected relations among joints towards HPE. In the AMPose, the Transformer encoder is applied to connect each joint with all the other joints, while GCNs are applied to capture information on physically connected relations. The effectiveness of our proposed method is evaluated on the Human3.6M dataset. Our model also shows better generalization ability by testing on the MPI-INF-3DHP dataset. Code can be retrieved at //github.com/erikervalid/AMPose.
Feature extraction and matching are the basic parts of many robotic vision tasks, such as 2D or 3D object detection, recognition, and registration. As known, 2D feature extraction and matching have already been achieved great success. Unfortunately, in the field of 3D, the current methods fail to support the extensive application of 3D LiDAR sensors in robotic vision tasks, due to the poor descriptiveness and inefficiency. To address this limitation, we propose a novel 3D feature representation method: Linear Keypoints representation for 3D LiDAR point cloud, called LinK3D. The novelty of LinK3D lies in that it fully considers the characteristics (such as the sparsity, and complexity of scenes) of LiDAR point clouds, and represents the keypoint with its robust neighbor keypoints, which provide strong distinction in the description of the keypoint. The proposed LinK3D has been evaluated on two public datasets (i.e., KITTI, Steven VLP16), and the experimental results show that our method greatly outperforms the state-of-the-art in matching performance. More importantly, LinK3D shows excellent real-time performance, faster than the sensor frame rate at 10 Hz of a typical rotating LiDAR sensor. LinK3D only takes an average of 32 milliseconds to extract features from the point cloud collected by a 64-beam LiDAR, and takes merely about 8 milliseconds to match two LiDAR scans when executed in a notebook with an Intel Core i7 @2.2 GHz processor. Moreover, our method can be widely extended to various 3D vision applications. In this paper, we apply the proposed LinK3D to the LiDAR odometry and place recognition task of LiDAR SLAM. The experimental results show that our method can improve the efficiency and accuracy of LiDAR SLAM system.
Precise relative navigation is a critical enabler for distributed satellites to achieve new mission objectives impossible for a monolithic spacecraft. Carrier phase differential GPS (CDGPS) with integer ambiguity resolution (IAR) is a promising means of achieving cm-level accuracy for high-precision Rendezvous, Proximity-Operations and Docking (RPOD), In-Space Servicing, Assembly and Manufacturing (ISAM) as well as satellite formation flying and swarming. However, IAR is sensitive to received GPS signal noise, especially under severe multi-path or high thermal noise. This paper proposes a sensor-fusion approach to achieve IAR under such conditions in two coupling stages. A loose coupling stage fuses through an Extended Kalman Filter the CDGPS measurements with on-board sensor measurements such as range from cross-links, and vision-based bearing angles. A second tight-coupling stage augments the cost function of the integer weighted least-squares minimization with a soft constraint function using noise-weighted observed-minus-computed residuals from these external sensor measurements. Integer acceptance tests are empirically modified to reflect added constraints. Partial IAR is applied to graduate integer fixing. These proposed techniques are packaged into flight-capable software, with ground truths simulated by the Stanford Space Rendezvous Laboratory's S3 library using state-of-the-art force modelling with relevant sources of errors, and validated in two scenarios: (1) a high multi-path scenario involving rendezvous and docking in low Earth orbit, and (2) a high thermal noise scenario relying only on GPS side-lobe signals during proximity operations in geostationary orbit. This study demonstrates successful IAR in both cases, using the proposed sensor-fusion approach, thus demonstrating potential for high-precision state estimation under adverse signal-to-noise conditions.
Multi-scale features are essential for dense prediction tasks, such as object detection, instance segmentation, and semantic segmentation. The prevailing methods usually utilize a classification backbone to extract multi-scale features and then fuse these features using a lightweight module (e.g., the fusion module in FPN and BiFPN, two typical object detection methods). However, as these methods allocate most computational resources to the classification backbone, the multi-scale feature fusion in these methods is delayed, which may lead to inadequate feature fusion. While some methods perform feature fusion from early stages, they either fail to fully leverage high-level features to guide low-level feature learning or have complex structures, resulting in sub-optimal performance. We propose a streamlined cascade encoder-decoder network, dubbed CEDNet, tailored for dense \mbox{prediction} tasks. All stages in CEDNet share the same encoder-decoder structure and perform multi-scale feature fusion within the decoder. A hallmark of CEDNet is its ability to incorporate high-level features from early stages to guide low-level feature learning in subsequent stages, thereby enhancing the effectiveness of multi-scale feature fusion. We explored three well-known encoder-decoder structures: Hourglass, UNet, and FPN. When integrated into CEDNet, they performed much better than traditional methods that use a pre-designed classification backbone combined with a lightweight fusion module. Extensive experiments on object detection, instance segmentation, and semantic segmentation demonstrated the effectiveness of our method. The code is available at //github.com/zhanggang001/CEDNet.
Query expansion is a commonly-used technique in many search systems to better represent users' information needs with additional query terms. Existing studies for this task usually propose to expand a query with retrieved or generated contextual documents. However, both types of methods have clear limitations. For retrieval-based methods, the documents retrieved with the original query might not be accurate enough to reveal the search intent, especially when the query is brief or ambiguous. For generation-based methods, existing models can hardly be trained or aligned on a particular corpus, due to the lack of corpus-specific labeled data. In this paper, we propose a novel Large Language Model (LLM) based mutual verification framework for query expansion, which alleviates the aforementioned limitations. Specifically, we first design a query-query-document generation pipeline, which can effectively leverage the contextual knowledge encoded in LLMs to generate sub-queries and corresponding documents from multiple perspectives. Next, we employ a mutual verification method for both generated and retrieved contextual documents, where 1) retrieved documents are filtered with the external contextual knowledge in generated documents, and 2) generated documents are filtered with the corpus-specific knowledge in retrieved documents. Overall, the proposed method allows retrieved and generated documents to complement each other to finalize a better query expansion. We conduct extensive experiments on three information retrieval datasets, i.e., TREC-DL-2020, TREC-COVID, and MSMARCO. The results demonstrate that our method outperforms other baselines significantly.
Answering complex questions about images is an ambitious goal for machine intelligence, which requires a joint understanding of images, text, and commonsense knowledge, as well as a strong reasoning ability. Recently, multimodal Transformers have made great progress in the task of Visual Commonsense Reasoning (VCR), by jointly understanding visual objects and text tokens through layers of cross-modality attention. However, these approaches do not utilize the rich structure of the scene and the interactions between objects which are essential in answering complex commonsense questions. We propose a Scene Graph Enhanced Image-Text Learning (SGEITL) framework to incorporate visual scene graphs in commonsense reasoning. To exploit the scene graph structure, at the model structure level, we propose a multihop graph transformer for regularizing attention interaction among hops. As for pre-training, a scene-graph-aware pre-training method is proposed to leverage structure knowledge extracted in the visual scene graph. Moreover, we introduce a method to train and generate domain-relevant visual scene graphs using textual annotations in a weakly-supervised manner. Extensive experiments on VCR and other tasks show a significant performance boost compared with the state-of-the-art methods and prove the efficacy of each proposed component.
Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.
Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.