CRYSTAL-Kyber (Kyber) is one of the post-quantum cryptography (PQC) key-encapsulation mechanism (KEM) schemes selected during the standardization process. This paper addresses optimization for Kyber architecture with respect to latency and throughput constraints. Specifically, matrix-vector multiplication and number theoretic transform (NTT)-based polynomial multiplication are critical operations and bottlenecks that require optimization. To address this challenge, we propose an algorithm and hardware co-design approach to systematically optimize matrix-vector multiplication and NTT-based polynomial multiplication by employing a novel sub-structure sharing technique in order to reduce computational complexity, i.e., the number of modular multiplications and modular additions/subtractions consumed. The sub-structure sharing approach is inspired by prior fast parallel approaches based on polyphase decomposition. The proposed efficient feed-forward architecture achieves high speed, low latency, and full utilization of all hardware components, which can significantly enhance the overall efficiency of the Kyber scheme. The FPGA implementation results show that our proposed design, using the fast two-parallel structure, leads to an approximate reduction of 90% in execution time, along with a 66 times improvement in throughput performance.
Multimodal Emotion Recognition in Conversation (ERC) plays an influential role in the field of human-computer interaction and conversational robotics since it can motivate machines to provide empathetic services. Multimodal data modeling is an up-and-coming research area in recent years, which is inspired by human capability to integrate multiple senses. Several graph-based approaches claim to capture interactive information between modalities, but the heterogeneity of multimodal data makes these methods prohibit optimal solutions. In this work, we introduce a multimodal fusion approach named Graph and Attention based Two-stage Multi-source Information Fusion (GA2MIF) for emotion detection in conversation. Our proposed method circumvents the problem of taking heterogeneous graph as input to the model while eliminating complex redundant connections in the construction of graph. GA2MIF focuses on contextual modeling and cross-modal modeling through leveraging Multi-head Directed Graph ATtention networks (MDGATs) and Multi-head Pairwise Cross-modal ATtention networks (MPCATs), respectively. Extensive experiments on two public datasets (i.e., IEMOCAP and MELD) demonstrate that the proposed GA2MIF has the capacity to validly capture intra-modal long-range contextual information and inter-modal complementary information, as well as outperforms the prevalent State-Of-The-Art (SOTA) models by a remarkable margin.
Quantization is commonly used in Deep Neural Networks (DNNs) to reduce the storage and computational complexity by decreasing the arithmetical precision of activations and weights, a.k.a. tensors. Efficient hardware architectures employ linear quantization to enable the deployment of recent DNNs onto embedded systems and mobile devices. However, linear uniform quantization cannot usually reduce the numerical precision to less than 8 bits without sacrificing high performance in terms of model accuracy. The performance loss is due to the fact that tensors do not follow uniform distributions. In this paper, we show that a significant amount of tensors fit into an exponential distribution. Then, we propose DNA-TEQ to exponentially quantize DNN tensors with an adaptive scheme that achieves the best trade-off between numerical precision and accuracy loss. The experimental results show that DNA-TEQ provides a much lower quantization bit-width compared to previous proposals, resulting in an average compression ratio of 40% over the linear INT8 baseline, with negligible accuracy loss and without retraining the DNNs. Besides, DNA-TEQ leads the way in performing dot-product operations in the exponential domain, which saves 66% of energy consumption on average for a set of widely used DNNs.
Score distillation sampling (SDS) has shown great promise in text-to-3D generation by distilling pretrained large-scale text-to-image diffusion models, but suffers from over-saturation, over-smoothing, and low-diversity problems. In this work, we propose to model the 3D parameter as a random variable instead of a constant as in SDS and present variational score distillation (VSD), a principled particle-based variational framework to explain and address the aforementioned issues in text-to-3D generation. We show that SDS is a special case of VSD and leads to poor samples with both small and large CFG weights. In comparison, VSD works well with various CFG weights as ancestral sampling from diffusion models and simultaneously improves the diversity and sample quality with a common CFG weight (i.e., $7.5$). We further present various improvements in the design space for text-to-3D such as distillation time schedule and density initialization, which are orthogonal to the distillation algorithm yet not well explored. Our overall approach, dubbed ProlificDreamer, can generate high rendering resolution (i.e., $512\times512$) and high-fidelity NeRF with rich structure and complex effects (e.g., smoke and drops). Further, initialized from NeRF, meshes fine-tuned by VSD are meticulously detailed and photo-realistic. Project page and codes: //ml.cs.tsinghua.edu.cn/prolificdreamer/
Parameter-efficient fine-tuning (PEFT) techniques make it possible to efficiently adapt a language model to create "expert" models that specialize to new tasks or domains. Recent techniques in model merging and compositional generalization leverage these expert models by dynamically composing modules to improve zero/few-shot generalization. Despite the efficiency of PEFT methods, the size of expert models can make it onerous to retrieve expert models per query over high-latency networks like the Internet or serve multiple experts on a single GPU. To address these issues, we present ComPEFT, a novel method for compressing fine-tuning residuals (task vectors) of PEFT based models. ComPEFT employs sparsification and ternary quantization to reduce the size of the PEFT module without performing any additional retraining while preserving or enhancing model performance. In extensive evaluation across T5, T0, and LLaMA-based models with 200M - 65B parameters, ComPEFT achieves compression ratios of 8x - 50x. In particular, we show that ComPEFT improves with scale - stronger models exhibit higher compressibility and better performance. For example, we show that ComPEFT applied to LLaMA outperforms QLoRA by 4.16% on MMLU with a storage size reduction of up to 26x. In addition, we show that the compressed experts produced by ComPEFT maintain few-shot compositional generalization capabilities, facilitate efficient communication and computation, and exhibit enhanced performance when merged. Lastly, we provide an analysis of different method components, compare it with other PEFT methods, and test ComPEFT's efficacy for compressing the residual of full-finetuning. Our code is available at //github.com/prateeky2806/compeft.
We present ShaDDR, an example-based deep generative neural network which produces a high-resolution textured 3D shape through geometry detailization and conditional texture generation applied to an input coarse voxel shape. Trained on a small set of detailed and textured exemplar shapes, our method learns to detailize the geometry via multi-resolution voxel upsampling and generate textures on voxel surfaces via differentiable rendering against exemplar texture images from a few views. The generation is interactive, taking less than 1 second to produce a 3D model with voxel resolutions up to 512^3. The generated shape preserves the overall structure of the input coarse voxel model, while the style of the generated geometric details and textures can be manipulated through learned latent codes. In the experiments, we show that our method can generate higher-resolution shapes with plausible and improved geometric details and clean textures compared to prior works. Furthermore, we showcase the ability of our method to learn geometric details and textures from shapes reconstructed from real-world photos. In addition, we have developed an interactive modeling application to demonstrate the generalizability of our method to various user inputs and the controllability it offers, allowing users to interactively sculpt a coarse voxel shape to define the overall structure of the detailized 3D shape. Code and data are available at //github.com/qiminchen/ShaDDR.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.
Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.
Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.
Most existing event extraction (EE) methods merely extract event arguments within the sentence scope. However, such sentence-level EE methods struggle to handle soaring amounts of documents from emerging applications, such as finance, legislation, health, etc., where event arguments always scatter across different sentences, and even multiple such event mentions frequently co-exist in the same document. To address these challenges, we propose a novel end-to-end model, Doc2EDAG, which can generate an entity-based directed acyclic graph to fulfill the document-level EE (DEE) effectively. Moreover, we reformalize a DEE task with the no-trigger-words design to ease the document-level event labeling. To demonstrate the effectiveness of Doc2EDAG, we build a large-scale real-world dataset consisting of Chinese financial announcements with the challenges mentioned above. Extensive experiments with comprehensive analyses illustrate the superiority of Doc2EDAG over state-of-the-art methods. Data and codes can be found at //github.com/dolphin-zs/Doc2EDAG.