亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Target-based sentiment analysis or aspect-based sentiment analysis (ABSA) refers to addressing various sentiment analysis tasks at a fine-grained level, which includes but is not limited to aspect extraction, aspect sentiment classification, and opinion extraction. There exist many solvers of the above individual subtasks or a combination of two subtasks, and they can work together to tell a complete story, i.e. the discussed aspect, the sentiment on it, and the cause of the sentiment. However, no previous ABSA research tried to provide a complete solution in one shot. In this paper, we introduce a new subtask under ABSA, named aspect sentiment triplet extraction (ASTE). Particularly, a solver of this task needs to extract triplets (What, How, Why) from the inputs, which show WHAT the targeted aspects are, HOW their sentiment polarities are and WHY they have such polarities (i.e. opinion reasons). For instance, one triplet from "Waiters are very friendly and the pasta is simply average" could be ('Waiters', positive, 'friendly'). We propose a two-stage framework to address this task. The first stage predicts what, how and why in a unified model, and then the second stage pairs up the predicted what (how) and why from the first stage to output triplets. In the experiments, our framework has set a benchmark performance in this novel triplet extraction task. Meanwhile, it outperforms a few strong baselines adapted from state-of-the-art related methods.

相關內容

狹義的(de)情(qing)(qing)感分(fen)析(xi)(sentiment analysis)是(shi)指利(li)用計算(suan)機實現對(dui)文(wen)(wen)本數據的(de)觀(guan)點、情(qing)(qing)感、態(tai)度、情(qing)(qing)緒等的(de)分(fen)析(xi)挖掘。廣(guang)義的(de)情(qing)(qing)感分(fen)析(xi)則(ze)包括對(dui)圖像視(shi)頻、語(yu)音、文(wen)(wen)本等多模(mo)態(tai)信(xin)息的(de)情(qing)(qing)感計算(suan)。簡單(dan)地講,情(qing)(qing)感分(fen)析(xi)研究的(de)目標是(shi)建立一個有效的(de)分(fen)析(xi)方法、模(mo)型和系統,對(dui)輸入信(xin)息中某個對(dui)象分(fen)析(xi)其持(chi)有的(de)情(qing)(qing)感信(xin)息,例如(ru)觀(guan)點傾向、態(tai)度、主觀(guan)觀(guan)點或喜怒哀(ai)樂等情(qing)(qing)緒表達。

知識薈萃

精品入(ru)門和(he)進階(jie)教程、論文和(he)代碼(ma)整理等

更多

查看相關VIP內容(rong)、論文、資(zi)訊等(deng)

Aspect-based sentiment analysis (ABSA) is to predict the sentiment polarity towards a particular aspect in a sentence. Recently, this task has been widely addressed by the neural attention mechanism, which computes attention weights to softly select words for generating aspect-specific sentence representations. The attention is expected to concentrate on opinion words for accurate sentiment prediction. However, attention is prone to be distracted by noisy or misleading words, or opinion words from other aspects. In this paper, we propose an alternative hard-selection approach, which determines the start and end positions of the opinion snippet, and selects the words between these two positions for sentiment prediction. Specifically, we learn deep associations between the sentence and aspect, and the long-term dependencies within the sentence by leveraging the pre-trained BERT model. We further detect the opinion snippet by self-critical reinforcement learning. Especially, experimental results demonstrate the effectiveness of our method and prove that our hard-selection approach outperforms soft-selection approaches when handling multi-aspect sentences.

While the general task of textual sentiment classification has been widely studied, much less research looks specifically at sentiment between a specified source and target. To tackle this problem, we experimented with a state-of-the-art relation extraction model. Surprisingly, we found that despite reasonable performance, the model's attention was often systematically misaligned with the words that contribute to sentiment. Thus, we directly trained the model's attention with human rationales and improved our model performance by a robust 4~8 points on all tasks we defined on our data sets. We also present a rigorous analysis of the model's attention, both trained and untrained, using novel and intuitive metrics. Our results show that untrained attention does not provide faithful explanations; however, trained attention with concisely annotated human rationales not only increases performance, but also brings faithful explanations. Encouragingly, a small amount of annotated human rationales suffice to correct the attention in our task.

Aspect-based sentiment analysis (ABSA), which aims to identify fine-grained opinion polarity towards a specific aspect, is a challenging subtask of sentiment analysis (SA). In this paper, we construct an auxiliary sentence from the aspect and convert ABSA to a sentence-pair classification task, such as question answering (QA) and natural language inference (NLI). We fine-tune the pre-trained model from BERT and achieve new state-of-the-art results on SentiHood and SemEval-2014 Task 4 datasets.

The emerging technique of deep learning has been widely applied in many different areas. However, when adopted in a certain specific domain, this technique should be combined with domain knowledge to improve efficiency and accuracy. In particular, when analyzing the applications of deep learning in sentiment analysis, we found that the current approaches are suffering from the following drawbacks: (i) the existing works have not paid much attention to the importance of different types of sentiment terms, which is an important concept in this area; and (ii) the loss function currently employed does not well reflect the degree of error of sentiment misclassification. To overcome such problem, we propose to combine domain knowledge with deep learning. Our proposal includes using sentiment scores, learnt by regression, to augment training data; and introducing penalty matrix for enhancing the loss function of cross entropy. When experimented, we achieved a significant improvement in classification results.

Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.

Sentiment analysis is proven to be very useful tool in many applications regarding social media. This has led to a great surge of research in this field. Hence, in this paper, we compile the baselines for such research. In this paper, we explore three different deep-learning based architectures for multimodal sentiment classification, each improving upon the previous. Further, we evaluate these architectures with multiple datasets with fixed train/test partition. We also discuss some major issues, frequently ignored in multimodal sentiment analysis research, e.g., role of speaker-exclusive models, importance of different modalities, and generalizability. This framework illustrates the different facets of analysis to be considered while performing multimodal sentiment analysis and, hence, serves as a new benchmark for future research in this emerging field. We draw a comparison among the methods using empirical data, obtained from the experiments. In the future, we plan to focus on extracting semantics from visual features, cross-modal features and fusion.

Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.

Sentiment Analysis (SA) is a major field of study in natural language processing, computational linguistics and information retrieval. Interest in SA has been constantly growing in both academia and industry over the recent years. Moreover, there is an increasing need for generating appropriate resources and datasets in particular for low resource languages including Persian. These datasets play an important role in designing and developing appropriate opinion mining platforms using supervised, semi-supervised or unsupervised methods. In this paper, we outline the entire process of developing a manually annotated sentiment corpus, SentiPers, which covers formal and informal written contemporary Persian. To the best of our knowledge, SentiPers is a unique sentiment corpus with such a rich annotation in three different levels including document-level, sentence-level, and entity/aspect-level for Persian. The corpus contains more than 26000 sentences of users opinions from digital product domain and benefits from special characteristics such as quantifying the positiveness or negativity of an opinion through assigning a number within a specific range to any given sentence. Furthermore, we present statistics on various components of our corpus as well as studying the inter-annotator agreement among the annotators. Finally, some of the challenges that we faced during the annotation process will be discussed as well.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

This project addresses the problem of sentiment analysis in twitter; that is classifying tweets according to the sentiment expressed in them: positive, negative or neutral. Twitter is an online micro-blogging and social-networking platform which allows users to write short status updates of maximum length 140 characters. It is a rapidly expanding service with over 200 million registered users - out of which 100 million are active users and half of them log on twitter on a daily basis - generating nearly 250 million tweets per day. Due to this large amount of usage we hope to achieve a reflection of public sentiment by analysing the sentiments expressed in the tweets. Analysing the public sentiment is important for many applications such as firms trying to find out the response of their products in the market, predicting political elections and predicting socioeconomic phenomena like stock exchange. The aim of this project is to develop a functional classifier for accurate and automatic sentiment classification of an unknown tweet stream.

北京阿比特科技有限公司