In this thesis, we propose new theoretical frameworks for the analysis of stochastic and distributed methods with error compensation and local updates. Using these frameworks, we develop more than 20 new optimization methods, including the first linearly converging Error-Compensated SGD and the first linearly converging Local-SGD for arbitrarily heterogeneous local functions. Moreover, the thesis contains several new distributed methods with unbiased compression for distributed non-convex optimization problems. The derived complexity results for these methods outperform the previous best-known results for the considered problems. Finally, we propose a new scalable decentralized fault-tolerant distributed method, and under reasonable assumptions, we derive the iteration complexity bounds for this method that match the ones of centralized Local-SGD.
In this paper we prove that Local (S)GD (or FedAvg) can optimize deep neural networks with Rectified Linear Unit (ReLU) activation function in polynomial time. Despite the established convergence theory of Local SGD on optimizing general smooth functions in communication-efficient distributed optimization, its convergence on non-smooth ReLU networks still eludes full theoretical understanding. The key property used in many Local SGD analysis on smooth function is gradient Lipschitzness, so that the gradient on local models will not drift far away from that on averaged model. However, this decent property does not hold in networks with non-smooth ReLU activation function. We show that, even though ReLU network does not admit gradient Lipschitzness property, the difference between gradients on local models and average model will not change too much, under the dynamics of Local SGD. We validate our theoretical results via extensive experiments. This work is the first to show the convergence of Local SGD on non-smooth functions, and will shed lights on the optimization theory of federated training of deep neural networks.
This paper presents fault-tolerant asynchronous Stochastic Gradient Descent (SGD) algorithms. SGD is widely used for approximating the minimum of a cost function $Q$, as a core part of optimization and learning algorithms. Our algorithms are designed for the cluster-based model, which combines message-passing and shared-memory communication layers. Processes may fail by crashing, and the algorithm inside each cluster is wait-free, using only reads and writes. For a strongly convex function $Q$, our algorithm tolerates any number of failures, and provides convergence rate that yields the maximal distributed acceleration over the optimal convergence rate of sequential SGD. For arbitrary functions, the convergence rate has an additional term that depends on the maximal difference between the parameters at the same iteration. (This holds under standard assumptions on $Q$.) In this case, the algorithm obtains the same convergence rate as sequential SGD, up to a logarithmic factor. This is achieved by using, at each iteration, a multidimensional approximate agreement algorithm, tailored for the cluster-based model. The algorithm for arbitrary functions requires that at least a majority of the clusters contain at least one nonfaulty process. We prove that this condition is necessary when optimizing some non-convex functions.
We introduce \algname{ProxSkip} -- a surprisingly simple and provably efficient method for minimizing the sum of a smooth ($f$) and an expensive nonsmooth proximable ($\psi$) function. The canonical approach to solving such problems is via the proximal gradient descent (\algname{ProxGD}) algorithm, which is based on the evaluation of the gradient of $f$ and the prox operator of $\psi$ in each iteration. In this work we are specifically interested in the regime in which the evaluation of prox is costly relative to the evaluation of the gradient, which is the case in many applications. \algname{ProxSkip} allows for the expensive prox operator to be skipped in most iterations: while its iteration complexity is $\cO(\kappa \log \nicefrac{1}{\varepsilon})$, where $\kappa$ is the condition number of $f$, the number of prox evaluations is $\cO(\sqrt{\kappa} \log \nicefrac{1}{\varepsilon})$ only. Our main motivation comes from federated learning, where evaluation of the gradient operator corresponds to taking a local \algname{GD} step independently on all devices, and evaluation of prox corresponds to (expensive) communication in the form of gradient averaging. In this context, \algname{ProxSkip} offers an effective {\em acceleration} of communication complexity. Unlike other local gradient-type methods, such as \algname{FedAvg}, \algname{SCAFFOLD}, \algname{S-Local-GD} and \algname{FedLin}, whose theoretical communication complexity is worse than, or at best matching, that of vanilla \algname{GD} in the heterogeneous data regime, we obtain a provable and large improvement without any heterogeneity-bounding assumptions.
We are concerned with the problem of hyperparameter selection for the fitted Q-evaluation (FQE). FQE is one of the state-of-the-art method for offline policy evaluation (OPE), which is essential to the reinforcement learning without environment simulators. However, like other OPE methods, FQE is not hyperparameter-free itself and that undermines the utility in real-life applications. We address this issue by proposing a framework of approximate hyperparameter selection (AHS) for FQE, which defines a notion of optimality (called selection criteria) in a quantitative and interpretable manner without hyperparameters. We then derive four AHS methods each of which has different characteristics such as distribution-mismatch tolerance and time complexity. We also confirm in experiments that the error bound given by the theory matches empirical observations.
We study the computational complexity of two hard problems on determinantal point processes (DPPs). One is maximum a posteriori (MAP) inference, i.e., to find a principal submatrix having the maximum determinant. The other is probabilistic inference on exponentiated DPPs (E-DPPs), which can sharpen or weaken the diversity preference of DPPs with an exponent parameter $p$. We present several complexity-theoretic hardness results that explain the difficulty in approximating MAP inference and the normalizing constant for E-DPPs. We first prove that unconstrained MAP inference for an $n \times n$ matrix is $\textsf{NP}$-hard to approximate within a factor of $2^{\beta n}$, where $\beta = 10^{-10^{13}} $. This result improves upon the best-known inapproximability factor of $(\frac{9}{8}-\epsilon)$, and rules out the existence of any polynomial-factor approximation algorithm assuming $\textsf{P} \neq \textsf{NP}$. We then show that log-determinant maximization is $\textsf{NP}$-hard to approximate within a factor of $\frac{5}{4}$ for the unconstrained case and within a factor of $1+10^{-10^{13}}$ for the size-constrained monotone case. In particular, log-determinant maximization does not admit a polynomial-time approximation scheme unless $\textsf{P} = \textsf{NP}$. As a corollary of the first result, we demonstrate that the normalizing constant for E-DPPs of any (fixed) constant exponent $p \geq \beta^{-1} = 10^{10^{13}}$ is $\textsf{NP}$-hard to approximate within a factor of $2^{\beta pn}$, which is in contrast to the case of $p \leq 1$ admitting a fully polynomial-time randomized approximation scheme.
We study the problem of learning in the stochastic shortest path (SSP) setting, where an agent seeks to minimize the expected cost accumulated before reaching a goal state. We design a novel model-based algorithm EB-SSP that carefully skews the empirical transitions and perturbs the empirical costs with an exploration bonus to guarantee both optimism and convergence of the associated value iteration scheme. We prove that EB-SSP achieves the minimax regret rate $\widetilde{O}(B_{\star} \sqrt{S A K})$, where $K$ is the number of episodes, $S$ is the number of states, $A$ is the number of actions and $B_{\star}$ bounds the expected cumulative cost of the optimal policy from any state, thus closing the gap with the lower bound. Interestingly, EB-SSP obtains this result while being parameter-free, i.e., it does not require any prior knowledge of $B_{\star}$, nor of $T_{\star}$ which bounds the expected time-to-goal of the optimal policy from any state. Furthermore, we illustrate various cases (e.g., positive costs, or general costs when an order-accurate estimate of $T_{\star}$ is available) where the regret only contains a logarithmic dependence on $T_{\star}$, thus yielding the first horizon-free regret bound beyond the finite-horizon MDP setting.
Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.
We propose accelerated randomized coordinate descent algorithms for stochastic optimization and online learning. Our algorithms have significantly less per-iteration complexity than the known accelerated gradient algorithms. The proposed algorithms for online learning have better regret performance than the known randomized online coordinate descent algorithms. Furthermore, the proposed algorithms for stochastic optimization exhibit as good convergence rates as the best known randomized coordinate descent algorithms. We also show simulation results to demonstrate performance of the proposed algorithms.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.