Recent years have seen significant advances in quantum/quantum-inspired technologies capable of approximately searching for the ground state of Ising spin Hamiltonians. The promise of leveraging such technologies to accelerate the solution of difficult optimization problems has spurred an increased interest in exploring methods to integrate Ising problems as part of their solution process, with existing approaches ranging from direct transcription to hybrid quantum-classical approaches rooted in existing optimization algorithms. While it is widely acknowledged that quantum computers should augment classical computers, rather than replace them entirely, comparatively little attention has been directed toward deriving analytical characterizations of their interactions. In this paper, we present a formal analysis of hybrid algorithms in the context of solving mixed-binary quadratic programs (MBQP) via Ising solvers. We show the exactness of a convex copositive reformulation of MBQPs, allowing the resulting reformulation to inherit the straightforward analysis of convex optimization. We propose to solve this reformulation with a hybrid quantum-classical cutting-plane algorithm. Using existing complexity results for convex cutting-plane algorithms, we deduce that the classical portion of this hybrid framework is guaranteed to be polynomial time. This suggests that when applied to NP-hard problems, the complexity of the solution is shifted onto the subroutine handled by the Ising solver.
Cycles are one of the fundamental subgraph patterns and being able to enumerate them in graphs enables important applications in a wide variety of fields, including finance, biology, chemistry, and network science. However, to enable cycle enumeration in real-world applications, efficient parallel algorithms are required. In this work, we propose scalable parallelisation of state-of-the-art sequential algorithms for enumerating simple, temporal, and hop-constrained cycles. First, we focus on the simple cycle enumeration problem and parallelise the algorithms by Johnson and by Read and Tarjan in a fine-grained manner. We theoretically show that our resulting fine-grained parallel algorithms are scalable, with the fine-grained parallel Read-Tarjan algorithm being strongly scalable. In contrast, we show that straightforward coarse-grained parallel versions of these simple cycle enumeration algorithms that exploit edge- or vertex-level parallelism are not scalable. Next, we adapt our fine-grained approach to enable the enumeration of cycles under time-window, temporal, and hop constraints. Our evaluation on a cluster with 256 CPU cores that can execute up to 1024 simultaneous threads demonstrates a near-linear scalability of our fine-grained parallel algorithms when enumerating cycles under the aforementioned constraints. On the same cluster, our fine-grained parallel algorithms achieve, on average, one order of magnitude speedup compared to the respective coarse-grained parallel versions of the state-of-the-art algorithms for cycle enumeration. The performance gap between the fine-grained and the coarse-grained parallel algorithms increases as we use more CPU cores.
In this paper, we show that in a parallel processing system, if a partial order is induced among the local states visited by a node, then synchronization cost can be eliminated. As a result of this partial order, a DAG is induced among the global states. Specifically, we show that in such systems, correctness is preserved even if the nodes execute asynchronously and read old information of other nodes. We present two variations for inducing DAGs -- \textit{DAG-inducing problems}, where the problem definition itself induces a DAG, and \textit{DAG-inducing algorithms}, where a DAG is induced by the algorithm. We demonstrate that the dominant clique (DC) problem and shortest path (SP) problem are DAG-inducing problems. Among these, DC allows self-stabilization, whereas the algorithm that we present for SP does not. We demonstrate that maximal matching (MM) is not a DAG-inducing problem. However, a DAG-inducing algorithm can be developed for it. The algorithm for MM allows self-stabilization. This algorithm converges in $2n$ moves and does not require a synchronous environment, which is an improvement over the existing algorithms in the literature. The algorithm for DC converges in $2m$ moves, and the algorithm for SP converges in $\mathcal{D}$ rounds. ($n$ is the number of nodes and $m$ is the number of edges in the input graph, and $\mathcal{D}$ is its diameter.) We also note that DAG-inducing problems are more general than, and encapsulate, lattice linear problems (Garg, SPAA 2020). Similarly, DAG-inducing algorithms encapsulate lattice linear algorithms (Gupta and Kulkarni, SSS 2022). We also show that a partial order induced among the local states visited by a node, as discussed above, is a necessary and sufficient condition to allow asynchrony.
Terahertz communication networks and intelligent reflecting surfaces exhibit significant potential in advancing wireless networks, particularly within the domain of aerial-based multi-access edge computing systems. These technologies enable efficient offloading of computational tasks from user electronic devices to Unmanned Aerial Vehicles or local execution. For the generation of high-quality task-offloading allocations, conventional numerical optimization methods often struggle to solve challenging combinatorial optimization problems within the limited channel coherence time, thereby failing to respond quickly to dynamic changes in system conditions. To address this challenge, we propose a deep learning-based optimization framework called Iterative Order-Preserving policy Optimization (IOPO), which enables the generation of energy-efficient task-offloading decisions within milliseconds. Unlike exhaustive search methods, IOPO provides continuous updates to the offloading decisions without resorting to exhaustive search, resulting in accelerated convergence and reduced computational complexity, particularly when dealing with complex problems characterized by extensive solution spaces. Experimental results demonstrate that the proposed framework can generate energy-efficient task-offloading decisions within a very short time period, outperforming other benchmark methods.
In this paper we study the relation of two fundamental problems in scheduling and fair allocation: makespan minimization on unrelated parallel machines and max-min fair allocation, also known as the Santa Claus problem. For both of these problems the best approximation factor is a notorious open question; more precisely, whether there is a better-than-2 approximation for the former problem and whether there is a constant approximation for the latter. While the two problems are intuitively related and history has shown that techniques can often be transferred between them, no formal reductions are known. We first show that an affirmative answer to the open question for makespan minimization implies the same for the Santa Claus problem by reducing the latter problem to the former. We also prove that for problem instances with only two input values both questions are equivalent. We then move to a special case called ``restricted assignment'', which is well studied in both problems. Although our reductions do not maintain the characteristics of this special case, we give a reduction in a slight generalization, where the jobs or resources are assigned to multiple machines or players subject to a matroid constraint and in addition we have only two values. This draws a similar picture as before: equivalence for two values and the general case of Santa Claus can only be easier than makespan minimization. To complete the picture, we give an algorithm for our new matroid variant of the Santa Claus problem using a non-trivial extension of the local search method from restricted assignment. Thereby we unify, generalize, and improve several previous results. We believe that this matroid generalization may be of independent interest and provide several sample applications.
The infinite horizon setting is widely adopted for problems of reinforcement learning (RL). These invariably result in stationary policies that are optimal. In many situations, finite horizon control problems are of interest and for such problems, the optimal policies are time-varying in general. Another setting that has become popular in recent times is of Constrained Reinforcement Learning, where the agent maximizes its rewards while it also aims to satisfy some given constraint criteria. However, this setting has only been studied in the context of infinite horizon MDPs where stationary policies are optimal. We present an algorithm for constrained RL in the Finite Horizon Setting where the horizon terminates after a fixed (finite) time. We use function approximation in our algorithm which is essential when the state and action spaces are large or continuous and use the policy gradient method to find the optimal policy. The optimal policy that we obtain depends on the stage and so is non-stationary in general. To the best of our knowledge, our paper presents the first policy gradient algorithm for the finite horizon setting with constraints. We show the convergence of our algorithm to a constrained optimal policy. We also compare and analyze the performance of our algorithm through experiments and show that our algorithm performs better than some other well known algorithms.
We study the problem of allocating divisible bads (chores) among multiple agents with additive utilities when monetary transfers are not allowed. The competitive rule is known for its remarkable fairness and efficiency properties in the case of goods. This rule was extended to chores in prior work by Bogomolnaia, Moulin, Sandomirskiy, and Yanovskaya (2017). The rule produces Pareto optimal and envy-free allocations for both goods and chores. In the case of goods, the outcome of the competitive rule can be easily computed. Competitive allocations solve the Eisenberg-Gale convex program; hence the outcome is unique and can be approximately found by standard gradient methods. An exact algorithm that runs in polynomial time in the number of agents and goods was given by Orlin (2010). In the case of chores, the competitive rule does not solve any convex optimization problem; instead, competitive allocations correspond to local minima, local maxima, and saddle points of the Nash social welfare on the Pareto frontier of the set of feasible utilities. The Pareto frontier may contain many such points; consequently, the competitive rule's outcome is no longer unique. In this paper, we show that all the outcomes of the competitive rule for chores can be computed in strongly polynomial time if either the number of agents or the number of chores is fixed. The approach is based on a combination of three ideas: all consumption graphs of Pareto optimal allocations can be listed in polynomial time; for a given consumption graph, a candidate for a competitive utility profile can be constructed via an explicit formula; each candidate can be checked for competitiveness, and the allocation can be reconstructed using a maximum flow computation. Our algorithm gives an approximately-fair allocation of indivisible chores by the rounding technique of Barman and Krishnamurthy (2018).
Automata operating on infinite objects feature prominently in the theory of the modal $\mu$-calculus. One such application concerns the tableau games introduced by Niwi\'{n}ski & Walukiewicz, of which the winning condition for infinite plays can be naturally checked by a nondeterministic parity stream automaton. Inspired by work of Jungteerapanich and Stirling we show how determinization constructions of this automaton may be used to directly obtain proof systems for the $\mu$-calculus. More concretely, we introduce a binary tree construction for determinizing nondeterministic parity stream automata. Using this construction we define the annotated cyclic proof system $\mathsf{BT}$, where formulas are annotated by tuples of binary strings. Soundness and Completeness of this system follow almost immediately from the correctness of the determinization method.
In many industrial applications, obtaining labeled observations is not straightforward as it often requires the intervention of human experts or the use of expensive testing equipment. In these circumstances, active learning can be highly beneficial in suggesting the most informative data points to be used when fitting a model. Reducing the number of observations needed for model development alleviates both the computational burden required for training and the operational expenses related to labeling. Online active learning, in particular, is useful in high-volume production processes where the decision about the acquisition of the label for a data point needs to be taken within an extremely short time frame. However, despite the recent efforts to develop online active learning strategies, the behavior of these methods in the presence of outliers has not been thoroughly examined. In this work, we investigate the performance of online active linear regression in contaminated data streams. Our study shows that the currently available query strategies are prone to sample outliers, whose inclusion in the training set eventually degrades the predictive performance of the models. To address this issue, we propose a solution that bounds the search area of a conditional D-optimal algorithm and uses a robust estimator. Our approach strikes a balance between exploring unseen regions of the input space and protecting against outliers. Through numerical simulations, we show that the proposed method is effective in improving the performance of online active learning in the presence of outliers, thus expanding the potential applications of this powerful tool.
Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.
Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.