亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Encompassing numerous nationwide, statewide, and institutional initiatives in the United States, provider profiling has evolved into a major health care undertaking with ubiquitous applications, profound implications, and high-stakes consequences. In line with such a significant profile, the literature has accumulated a number of developments dedicated to enhancing the statistical paradigm of provider profiling. Tackling wide-ranging profiling issues, these methods typically adjust for risk factors using linear predictors. While this approach is simple, it can be too restrictive to characterize complex and dynamic factor-outcome associations in certain contexts. One such example arises from evaluating dialysis facilities treating Medicare beneficiaries with end-stage renal disease. It is of primary interest to consider how the coronavirus disease (COVID-19) affected 30-day unplanned readmissions in 2020. The impact of COVID-19 on the risk of readmission varied dramatically across pandemic phases. To efficiently capture the variation while profiling facilities, we develop a generalized partially linear model (GPLM) that incorporates a neural network. Considering provider-level clustering, we implement the GPLM as a stratified sampling-based stochastic optimization algorithm that features accelerated convergence. Furthermore, an exact test is designed to identify under- and over-performing facilities, with an accompanying funnel plot to visualize profiles. The advantages of the proposed methods are demonstrated through simulation experiments and profiling dialysis facilities using 2020 Medicare claims from the United States Renal Data System.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Higher order finite difference Weighted Essentially Non-Oscillatory (WENO) schemes for conservation laws represent a technology that has been reasonably consolidated. They are extremely popular because, when applied to multidimensional problems, they offer high order accuracy at a fraction of the cost of finite volume WENO or DG schemes. They come in two flavors. There is the classical finite difference WENO (FD-WENO) method (Shu and Osher, J. Comput. Phys., 83 (1989) 32-78). However, in recent years there is also an alternative finite difference WENO (AFD-WENO) method which has recently been formalized into a very useful general-purpose algorithm for conservation laws (Balsara et al., Efficient Alternative Finite Difference WENO Schemes for Hyperbolic Conservation Laws, submitted to CAMC (2023)). However, the FD-WENO algorithm has only very recently been formulated for hyperbolic systems with non-conservative products (Balsara et al., Efficient Finite Difference WENO Scheme for Hyperbolic Systems with Non-Conservative Products, to appear CAMC (2023)). In this paper we show that there are substantial advantages in obtaining an AFD-WENO algorithm for hyperbolic systems with non-conservative products. Such an algorithm is documented in this paper. We present an AFD-WENO formulation in fluctuation form that is carefully engineered to retrieve the flux form when that is warranted and nevertheless extends to non-conservative products. The method is flexible because it allows any Riemann solver to be used. The formulation we arrive at is such that when non-conservative products are absent it reverts exactly to the formulation in the second citation above which is in exact flux conservation form. The ability to transition to a precise conservation form when non-conservative products are absent ensures, via the Lax-Wendroff theorem, that shock locations will be exactly ...

Musculoskeletal diseases and cognitive impairments in patients lead to difficulties in movement as well as negative effects on their psychological health. Clinical gait analysis, a vital tool for early diagnosis and treatment, traditionally relies on expensive optical motion capture systems. Recent advances in computer vision and deep learning have opened the door to more accessible and cost-effective alternatives. This paper introduces a novel spatio-temporal Transformer network to estimate critical gait parameters from RGB videos captured by a single-view camera. Empirical evaluations on a public dataset of cerebral palsy patients indicate that the proposed framework surpasses current state-of-the-art approaches and show significant improvements in predicting general gait parameters (including Walking Speed, Gait Deviation Index - GDI, and Knee Flexion Angle at Maximum Extension), while utilizing fewer parameters and alleviating the need for manual feature extraction.

Latent variable models are increasingly used in economics for high-dimensional categorical data like text and surveys. We demonstrate the effectiveness of Hamiltonian Monte Carlo (HMC) with parallelized automatic differentiation for analyzing such data in a computationally efficient and methodologically sound manner. Our new model, Supervised Topic Model with Covariates, shows that carefully modeling this type of data can have significant implications on conclusions compared to a simpler, frequently used, yet methodologically problematic, two-step approach. A simulation study and revisiting Bandiera et al. (2020)'s study of executive time use demonstrate these results. The approach accommodates thousands of parameters and doesn't require custom algorithms specific to each model, making it accessible for applied researchers

Emphasizing problem formulation in AI literacy activities with children is vital, yet we lack empirical studies on their structure and affordances. We propose that participatory design involving teachable machines facilitates problem formulation activities. To test this, we integrated problem reduction heuristics into storyboarding and invited a university-based intergenerational design team of 10 children (ages 8-13) and 9 adults to co-design a teachable machine. We find that children draw from personal experiences when formulating AI problems; they assume voice and video capabilities, explore diverse machine learning approaches, and plan for error handling. Their ideas promote human involvement in AI, though some are drawn to more autonomous systems. Their designs prioritize values like capability, logic, helpfulness, responsibility, and obedience, and a preference for a comfortable life, family security, inner harmony, and excitement as end-states. We conclude by discussing how these results can inform the design of future participatory AI activities.

The military is investigating methods to improve communication and agility in its multi-domain operations (MDO). Nascent popularity of Internet of Things (IoT) has gained traction in public and government domains. Its usage in MDO may revolutionize future battlefields and may enable strategic advantage. While this technology offers leverage to military capabilities, it comes with challenges where one is the uncertainty and associated risk. A key question is how can these uncertainties be addressed. Recently published studies proposed information camouflage to transform information from one data domain to another. As this is comparatively a new approach, we investigate challenges of such transformations and how these associated uncertainties can be detected and addressed, specifically unknown-unknowns to improve decision-making.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司