Simulating quantum systems is one of the most promising avenues to harness the computational power of quantum computers. However, hardware errors in noisy near-term devices remain a major obstacle for applications. Ideas based on the randomization of Suzuki-Trotter product formulas have been shown to be a powerful approach to reducing the errors of quantum simulation and lowering the gate count. In this paper, we study the performance of non-unitary simulation channels and consider the error structure of channels constructed from a weighted average of unitary circuits. We show that averaging over just a few simulation circuits can significantly reduce the Trotterization error for both single-step short-time and multi-step long-time simulations. We focus our analysis on two approaches for constructing circuit ensembles for averaging: (i) permuting the order of the terms in the Hamiltonian and (ii) applying a set of global symmetry transformations. We compare our analytical error bounds to empirical performance and show that empirical error reduction surpasses our analytical estimates in most cases. Finally, we test our method on an IonQ trapped-ion quantum computer accessed via the Amazon Braket cloud platform, and benchmark the performance of the averaging approach.
Obtaining sparse, interpretable representations of observable data is crucial in many machine learning and signal processing tasks. For data representing flows along the edges of a graph, an intuitively interpretable way to obtain such representations is to lift the graph structure to a simplicial complex: The eigenvectors of the associated Hodge-Laplacian, respectively the incidence matrices of the corresponding simplicial complex then induce a Hodge decomposition, which can be used to represent the observed data in terms of gradient, curl, and harmonic flows. In this paper, we generalize this approach to cellular complexes and introduce the cell inference optimization problem, i.e., the problem of augmenting the observed graph by a set of cells, such that the eigenvectors of the associated Hodge Laplacian provide a sparse, interpretable representation of the observed edge flows on the graph. We show that this problem is NP-hard and introduce an efficient approximation algorithm for its solution. Experiments on real-world and synthetic data demonstrate that our algorithm outperforms current state-of-the-art methods while being computationally efficient.
There has been an enormous interest in analysing and modelling periodic time series. The research on periodically integrated autoregressive (PIAR) models which capture the periodic structure and the presence of unit roots is widely applied in environmental, financial and energy areas. In this paper, we propose a multi-companion method which uses the eigen information of the multi-companion matrix in the multi-companion representation of PIAR models. The method enables the estimation and forecasting of PIAR models with a single, two and multiple unit roots. We show that the parameters of PIAR models can be represented in terms of the eigen information of the multi-companion matrix. Consequently, the estimation can be conducted using the eigen information, rather than directly estimating the parameters of PIAR models. A Monte Carlo experiment and an application are provided to illustrate the robustness and effectiveness of the multi-companion method.
Differential Dynamic Programming (DDP) is an efficient computational tool for solving nonlinear optimal control problems. It was originally designed as a single shooting method and thus is sensitive to the initial guess supplied. This work considers the extension of DDP to multiple shooting (MS), improving its robustness to initial guesses. A novel derivation is proposed that accounts for the defect between shooting segments during the DDP backward pass, while still maintaining quadratic convergence locally. The derivation enables unifying multiple previous MS algorithms, and opens the door to many smaller algorithmic improvements. A penalty method is introduced to strategically control the step size, further improving the convergence performance. An adaptive merit function and a more reliable acceptance condition are employed for globalization. The effects of these improvements are benchmarked for trajectory optimization with a quadrotor, an acrobot, and a manipulator. MS-DDP is also demonstrated for use in Model Predictive Control (MPC) for dynamic jumping with a quadruped robot, showing its benefits over a single shooting approach.
Graph algorithms are widely used for decision making and knowledge discovery. To ensure their effectiveness, it is essential that their output remains stable even when subjected to small perturbations to the input because frequent output changes can result in costly decisions, reduced user trust, potential security concerns, and lack of replicability. In this study, we consider the Lipschitz continuity of algorithms as a stability measure and initiate a systematic study of the Lipschitz continuity of algorithms for (weighted) graph problems. Depending on how we embed the output solution to a metric space, we can think of several Lipschitzness notions. We mainly consider the one that is invariant under scaling of weights, and we provide Lipschitz continuous algorithms and lower bounds for the minimum spanning tree problem, the shortest path problem, and the maximum weight matching problem. In particular, our shortest path algorithm is obtained by first designing an algorithm for unweighted graphs that are robust against edge contractions and then applying it to the unweighted graph constructed from the original weighted graph. Then, we consider another Lipschitzness notion induced by a natural mapping that maps the output solution to its characteristic vector. It turns out that no Lipschitz continuous algorithm exists for this Lipschitz notion, and we instead design algorithms with bounded pointwise Lipschitz constants for the minimum spanning tree problem and the maximum weight bipartite matching problem. Our algorithm for the latter problem is based on an LP relaxation with entropy regularization.
We propose Gibbs-Duhem-informed neural networks for the prediction of binary activity coefficients at varying compositions. That is, we include the Gibbs-Duhem equation explicitly in the loss function for training neural networks, which is straightforward in standard machine learning (ML) frameworks enabling automatic differentiation. In contrast to recent hybrid ML approaches, our approach does not rely on embedding a specific thermodynamic model inside the neural network and corresponding prediction limitations. Rather, Gibbs-Duhem consistency serves as regularization, with the flexibility of ML models being preserved. Our results show increased thermodynamic consistency and generalization capabilities for activity coefficient predictions by Gibbs-Duhem-informed graph neural networks and matrix completion methods. We also find that the model architecture, particularly the activation function, can have a strong influence on the prediction quality. The approach can be easily extended to account for other thermodynamic consistency conditions.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.
Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.