亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

An abstract property (H) is the key to a complete a priori error analysis in the (discrete) energy norm for several nonstandard finite element methods in the recent work [Lowest-order equivalent nonstandard finite element methods for biharmonic plates, Carstensen and Nataraj, M2AN, 2022]. This paper investigates the impact of (H) to the a posteriori error analysis and establishes known and novel explicit residual-based a posteriori error estimates. The abstract framework applies to Morley, two versions of discontinuous Galerkin, $C^0$ interior penalty, as well as weakly over-penalized symmetric interior penalty schemes for the biharmonic equation with a general source term in $H^{-2}(\Omega)$.

相關內容

We propose a new randomized method for solving systems of nonlinear equations, which can find sparse solutions or solutions under certain simple constraints. The scheme only takes gradients of component functions and uses Bregman projections onto the solution space of a Newton equation. In the special case of euclidean projections, the method is known as nonlinear Kaczmarz method. Furthermore, if the component functions are nonnegative, we are in the setting of optimization under the interpolation assumption and the method reduces to SGD with the recently proposed stochastic Polyak step size. For general Bregman projections, our method is a stochastic mirror descent with a novel adaptive step size. We prove that in the convex setting each iteration of our method results in a smaller Bregman distance to exact solutions as compared to the standard Polyak step. Our generalization to Bregman projections comes with the price that a convex one-dimensional optimization problem needs to be solved in each iteration. This can typically be done with globalized Newton iterations. Convergence is proved in two classical settings of nonlinearity: for convex nonnegative functions and locally for functions which fulfill the tangential cone condition. Finally, we show examples in which the proposed method outperforms similar methods with the same memory requirements.

For the numerical solution of the cubic nonlinear Schr\"{o}dinger equation with periodic boundary conditions, a pseudospectral method in space combined with a filtered Lie splitting scheme in time is considered. This scheme is shown to converge even for initial data with very low regularity. In particular, for data in $H^s(\mathbb T^2)$, where $s>0$, convergence of order $\mathcal O(\tau^{s/2}+N^{-s})$ is proved in $L^2$. Here $\tau$ denotes the time step size and $N$ the number of Fourier modes considered. The proof of this result is carried out in an abstract framework of discrete Bourgain spaces, the final convergence result, however, is given in $L^2$. The stated convergence behavior is illustrated by several numerical examples.

We consider a general family of nonlocal in space and time diffusion equations with space-time dependent diffusivity and prove convergence of finite difference schemes in the context of viscosity solutions under very mild conditions. The proofs, based on regularity properties and compactness arguments on the numerical solution, allow to inherit a number of interesting results for the limit equation. More precisely, assuming H\"older regularity only on the initial condition, we prove convergence of the scheme, space-time H\"older regularity of the solution depending on the fractional orders of the operators, as well as specific blow up rates of the first time derivative. Finally, using the obtained regularity results, we are able to prove orders of convergence of the scheme in some cases. These results are consistent with previous studies. The schemes' performance is further numerically verified using both constructed exact solutions and realistic examples. Our experiments show that multithreaded implementation yields an efficient method to solve nonlocal equations numerically.

Common regularization algorithms for linear regression, such as LASSO and Ridge regression, rely on a regularization hyperparameter that balances the tradeoff between minimizing the fitting error and the norm of the learned model coefficients. As this hyperparameter is scalar, it can be easily selected via random or grid search optimizing a cross-validation criterion. However, using a scalar hyperparameter limits the algorithm's flexibility and potential for better generalization. In this paper, we address the problem of linear regression with l2-regularization, where a different regularization hyperparameter is associated with each input variable. We optimize these hyperparameters using a gradient-based approach, wherein the gradient of a cross-validation criterion with respect to the regularization hyperparameters is computed analytically through matrix differential calculus. Additionally, we introduce two strategies tailored for sparse model learning problems aiming at reducing the risk of overfitting to the validation data. Numerical examples demonstrate that our multi-hyperparameter regularization approach outperforms LASSO, Ridge, and Elastic Net regression. Moreover, the analytical computation of the gradient proves to be more efficient in terms of computational time compared to automatic differentiation, especially when handling a large number of input variables. Application to the identification of over-parameterized Linear Parameter-Varying models is also presented.

We introduce numerical solvers for the steady-state Boltzmann equation based on the symmetric Gauss-Seidel (SGS) method. Due to the quadratic collision operator in the Boltzmann equation, the SGS method requires solving a nonlinear system on each grid cell, and we consider two methods, namely Newton's method and the fixed-point iteration, in our numerical tests. For small Knudsen numbers, our method has an efficiency between the classical source iteration and the modern generalized synthetic iterative scheme, and the complexity of its implementation is closer to the source iteration. A variety of numerical tests are carried out to demonstrate its performance, and it is concluded that the proposed method is suitable for applications with moderate to large Knudsen numbers.

Miura surfaces are the solutions of a constrained nonlinear elliptic system of equations. This system is derived by homogenization from the Miura fold, which is a type of origami fold with multiple applications in engineering. A previous inquiry, gave suboptimal conditions for existence of solutions and proposed an $H^2$-conformal finite element method to approximate them. In this paper, the existence of Miura surfaces is studied using a mixed formulation. It is also proved that the constraints propagate from the boundary to the interior of the domain for well-chosen boundary conditions. Then, a numerical method based on a least-squares formulation, Taylor--Hood finite elements and a Newton method is introduced to approximate Miura surfaces. The numerical method is proved to converge and numerical tests are performed to demonstrate its robustness.

Nonlinear Fokker-Planck equations play a major role in modeling large systems of interacting particles with a proved effectiveness in describing real world phenomena ranging from classical fields such as fluids and plasma to social and biological dynamics. Their mathematical formulation has often to face with physical forces having a significant random component or with particles living in a random environment which characterization may be deduced through experimental data and leading consequently to uncertainty-dependent equilibrium states. In this work, to address the problem of effectively solving stochastic Fokker-Planck systems, we will construct a new equilibrium preserving scheme through a micro-macro approach based on stochastic Galerkin methods. The resulting numerical method, contrarily to the direct application of a stochastic Galerkin projection in the parameter space of the unknowns of the underlying Fokker-Planck model, leads to highly accurate description of the uncertainty dependent large time behavior. Several numerical tests in the context of collective behavior for social and life sciences are presented to assess the validity of the present methodology against standard ones.

Stochastic differential equations (SDEs) are an important framework to model dynamics with randomness, as is common in most biological systems. The inverse problem of integrating these models with empirical data remains a major challenge. Here, we present a software package, PyDaDDy (Python Library for Data Driven Dynamics) that takes time series data as an input and outputs an interpretable SDE. We achieve this by combining traditional approaches from stochastic calculus literature with state-of-the-art equation discovery techniques. We validate our approach on synthetic datasets, and demonstrate the generality and applicability of the method on two real-world datasets of vastly different spatiotemporal scales: (i) collective movement of fish school where stochasticity plays a crucial role, and (ii) confined migration of a single cell, primarily following a relaxed oscillation. We make the method available as an easy-to-use, open-source Python package, PyDaddy (Python Library for Data Driven Dynamics).

The weak Galerkin (WG) finite element method has shown great potential in solving various type of partial differential equations. In this paper, we propose an arbitrary order locking-free WG method for solving linear elasticity problems, with the aid of an appropriate $H(div)$-conforming displacement reconstruction operator. Optimal order locking-free error estimates in both the $H^1$-norm and the $L^2$-norm are proved, i.e., the error is independent of the $Lam\acute{e}$ constant $\lambda$. Moreover, the term $\lambda\|\nabla\cdot \mathbf{u}\|_k$ does not need to be bounded in order to achieve these estimates. We validate the accuracy and the robustness of the proposed locking-free WG algorithm by numerical experiments.

We present the numerical analysis of a finite element method (FEM) for one-dimensional Dirichlet problems involving the logarithmic Laplacian (the pseudo-differential operator that appears as a first-order expansion of the fractional Laplacian as the exponent $s\to 0^+$). Our analysis exhibits new phenomena in this setting; in particular, using recently obtained regularity results, we prove rigorous error estimates and provide a logarithmic order of convergence in the energy norm using suitable \emph{log}-weighted spaces. Numerical evidence suggests that this type of rate cannot be improved. Moreover, we show that the stiffness matrix of logarithmic problems can be obtained as the derivative of the fractional stiffness matrix evaluated at $s=0$. Lastly, we investigate the relationship between the discrete eigenvalue problem and its convergence to the continuous one.

北京阿比特科技有限公司