Estimating camera motion in deformable scenes poses a complex and open research challenge. Most existing non-rigid structure from motion techniques assume to observe also static scene parts besides deforming scene parts in order to establish an anchoring reference. However, this assumption does not hold true in certain relevant application cases such as endoscopies. Deformable odometry and SLAM pipelines, which tackle the most challenging scenario of exploratory trajectories, suffer from a lack of robustness and proper quantitative evaluation methodologies. To tackle this issue with a common benchmark, we introduce the Drunkard's Dataset, a challenging collection of synthetic data targeting visual navigation and reconstruction in deformable environments. This dataset is the first large set of exploratory camera trajectories with ground truth inside 3D scenes where every surface exhibits non-rigid deformations over time. Simulations in realistic 3D buildings lets us obtain a vast amount of data and ground truth labels, including camera poses, RGB images and depth, optical flow and normal maps at high resolution and quality. We further present a novel deformable odometry method, dubbed the Drunkard's Odometry, which decomposes optical flow estimates into rigid-body camera motion and non-rigid scene deformations. In order to validate our data, our work contains an evaluation of several baselines as well as a novel tracking error metric which does not require ground truth data. Dataset and code: //davidrecasens.github.io/TheDrunkard'sOdometry/
Recent years have witnessed a rapid growth of deep generative models, with text-to-image models gaining significant attention from the public. However, existing models often generate images that do not align well with human preferences, such as awkward combinations of limbs and facial expressions. To address this issue, we collect a dataset of human choices on generated images from the Stable Foundation Discord channel. Our experiments demonstrate that current evaluation metrics for generative models do not correlate well with human choices. Thus, we train a human preference classifier with the collected dataset and derive a Human Preference Score (HPS) based on the classifier. Using HPS, we propose a simple yet effective method to adapt Stable Diffusion to better align with human preferences. Our experiments show that HPS outperforms CLIP in predicting human choices and has good generalization capability toward images generated from other models. By tuning Stable Diffusion with the guidance of HPS, the adapted model is able to generate images that are more preferred by human users. The project page is available here: //tgxs002.github.io/align_sd_web/ .
Building artificial intelligence (AI) systems on top of a set of foundation models (FMs) is becoming a new paradigm in AI research. Their representative and generative abilities learnt from vast amounts of data can be easily adapted and transferred to a wide range of downstream tasks without extra training from scratch. However, leveraging FMs in cross-modal generation remains under-researched when audio modality is involved. On the other hand, automatically generating semantically-relevant sound from visual input is an important problem in cross-modal generation studies. To solve this vision-to-audio (V2A) generation problem, existing methods tend to design and build complex systems from scratch using modestly sized datasets. In this paper, we propose a lightweight solution to this problem by leveraging foundation models, specifically CLIP, CLAP, and AudioLDM. We first investigate the domain gap between the latent space of the visual CLIP and the auditory CLAP models. Then we propose a simple yet effective mapper mechanism (V2A-Mapper) to bridge the domain gap by translating the visual input between CLIP and CLAP spaces. Conditioned on the translated CLAP embedding, pretrained audio generative FM AudioLDM is adopted to produce high-fidelity and visually-aligned sound. Compared to previous approaches, our method only requires a quick training of the V2A-Mapper. We further analyze and conduct extensive experiments on the choice of the V2A-Mapper and show that a generative mapper is better at fidelity and variability (FD) while a regression mapper is slightly better at relevance (CS). Both objective and subjective evaluation on two V2A datasets demonstrate the superiority of our proposed method compared to current state-of-the-art approaches - trained with 86% fewer parameters but achieving 53% and 19% improvement in FD and CS, respectively.
Automatic speech recognition (ASR) based on transducers is widely used. In training, a transducer maximizes the summed posteriors of all paths. The path with the highest posterior is commonly defined as the predicted alignment between the speech and the transcription. While the vanilla transducer does not have a prior preference for any of the valid paths, this work intends to enforce the preferred paths and achieve controllable alignment prediction. Specifically, this work proposes Bayes Risk Transducer (BRT), which uses a Bayes risk function to set lower risk values to the preferred paths so that the predicted alignment is more likely to satisfy specific desired properties. We further demonstrate that these predicted alignments with intentionally designed properties can provide practical advantages over the vanilla transducer. Experimentally, the proposed BRT saves inference cost by up to 46% for non-streaming ASR and reduces overall system latency by 41% for streaming ASR.
We introduce the problem of knot-based inverse perceptual art. Given multiple target images and their corresponding viewing configurations, the objective is to find a 3D knot-based tubular structure whose appearance resembles the target images when viewed from the specified viewing configurations. To solve this problem, we first design a differentiable rendering algorithm for rendering tubular knots embedded in 3D for arbitrary perspective camera configurations. Utilizing this differentiable rendering algorithm, we search over the space of knot configurations to find the ideal knot embedding. We represent the knot embeddings via homeomorphisms of the desired template knot, where the homeomorphisms are parametrized by the weights of an invertible neural network. Our approach is fully differentiable, making it possible to find the ideal 3D tubular structure for the desired perceptual art using gradient-based optimization. We propose several loss functions that impose additional physical constraints, enforcing that the tube is free of self-intersection, lies within a predefined region in space, satisfies the physical bending limits of the tube material and the material cost is within a specified budget. We demonstrate through results that our knot representation is highly expressive and gives impressive results even for challenging target images in both single view as well as multiple view constraints. Through extensive ablation study we show that each of the proposed loss function is effective in ensuring physical realizability. We construct a real world 3D-printed object to demonstrate the practical utility of our approach. To the best of our knowledge, we are the first to propose a fully differentiable optimization framework for knot-based inverse perceptual art.
Augmented and mixed-reality techniques harbor a great potential for improving human-robot collaboration. Visual signals and cues may be projected to a human partner in order to explicitly communicate robot intentions and goals. However, it is unclear what type of signals support such a process and whether signals can be combined without adding additional cognitive stress to the partner. This paper focuses on identifying the effective types of visual signals and quantify their impact through empirical evaluations. In particular, the study compares static and dynamic visual signals within a collaborative object sorting task and assesses their ability to shape human behavior. Furthermore, an information-theoretic analysis is performed to numerically quantify the degree of information transfer between visual signals and human behavior. The results of a human subject experiment show that there are significant advantages to combining multiple visual signals within a single task, i.e., increased task efficiency and reduced cognitive load.
Multiple robots could perceive a scene (e.g., detect objects) collaboratively better than individuals, although easily suffer from adversarial attacks when using deep learning. This could be addressed by the adversarial defense, but its training requires the often-unknown attacking mechanism. Differently, we propose ROBOSAC, a novel sampling-based defense strategy generalizable to unseen attackers. Our key idea is that collaborative perception should lead to consensus rather than dissensus in results compared to individual perception. This leads to our hypothesize-and-verify framework: perception results with and without collaboration from a random subset of teammates are compared until reaching a consensus. In such a framework, more teammates in the sampled subset often entail better perception performance but require longer sampling time to reject potential attackers. Thus, we derive how many sampling trials are needed to ensure the desired size of an attacker-free subset, or equivalently, the maximum size of such a subset that we can successfully sample within a given number of trials. We validate our method on the task of collaborative 3D object detection in autonomous driving scenarios.
Research on conversational search has so far mostly focused on query rewriting and multi-stage passage retrieval. However, synthesizing the top retrieved passages into a complete, relevant, and concise response is still an open challenge. Having snippet-level annotations of relevant passages would enable both (1) the training of response generation models that are able to ground answers in actual statements and (2) the automatic evaluation of the generated responses in terms of completeness. In this paper, we address the problem of collecting high-quality snippet-level answer annotations for two of the TREC Conversational Assistance track datasets. To ensure quality, we first perform a preliminary annotation study, employing different task designs, crowdsourcing platforms, and workers with different qualifications. Based on the outcomes of this study, we refine our annotation protocol before proceeding with the full-scale data collection. Overall, we gather annotations for 1.8k question-paragraph pairs, each annotated by three independent crowd workers. The process of collecting data at this magnitude also led to multiple insights about the problem that can inform the design of future response-generation methods. This is an extended version of the article published with the same title in the Proceedings of CIKM'23.
We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.
We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.