亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Smart homes are powered by numerous programmable IoT platforms. Despite tremendous innovations, these platforms often suffer from safety and security issues. One class of defense solutions dynamically enforces safety and security policies, which essentially capture the expected behavior of the IoT system. While many proposed works were built on this runtime approach, they all are under-vetted. The primary reason lies in their evaluation approach. They are mostly self-evaluated in isolation using a virtual testbed combined with manually orchestrated test scenarios that rely on user interactions with the platform's UI. Such hand-crafted and non-uniform evaluation setups are limiting not only the reproducibility but also a comparative analysis of their efficacy results. Closing this gap in the traditional way requires a huge upfront manual effort, which causes the researchers turn away from any large-scale comparative empirical evaluation. Therefore, in this paper, we propose a highly-automated uniform evaluation platform, dubbed VetIoT, to vet the defense solutions that hinge on runtime policy enforcement. Given a defense solution, VetIoT easily instantiates a virtual testbed inside which the solution is empirically evaluated. VetIoT replaces manual UI-based interactions with an automated event simulator and manual inspection of test outcomes with an automated comparator. We developed a fully-functional prototype of VetIoT and applied it on three runtime policy enforcement solutions: Expat, Patriot, and IoTguard. VetIoT reproduced their individual prior results and assessed their efficacy results via stress testing and differential testing. We believe VetIoT can foster future research/evaluation.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Datasets of labeled network traces are essential for a multitude of machine learning (ML) tasks in networking, yet their availability is hindered by privacy and maintenance concerns, such as data staleness. To overcome this limitation, synthetic network traces can often augment existing datasets. Unfortunately, current synthetic trace generation methods, which typically produce only aggregated flow statistics or a few selected packet attributes, do not always suffice, especially when model training relies on having features that are only available from packet traces. This shortfall manifests in both insufficient statistical resemblance to real traces and suboptimal performance on ML tasks when employed for data augmentation. In this paper, we apply diffusion models to generate high-resolution synthetic network traffic traces. We present NetDiffusion, a tool that uses a finely-tuned, controlled variant of a Stable Diffusion model to generate synthetic network traffic that is high fidelity and conforms to protocol specifications. Our evaluation demonstrates that packet captures generated from NetDiffusion can achieve higher statistical similarity to real data and improved ML model performance than current state-of-the-art approaches (e.g., GAN-based approaches). Furthermore, our synthetic traces are compatible with common network analysis tools and support a myriad of network tasks, suggesting that NetDiffusion can serve a broader spectrum of network analysis and testing tasks, extending beyond ML-centric applications.

Existing regression models tend to fall short in both accuracy and uncertainty estimation when the label distribution is imbalanced. In this paper, we propose a probabilistic deep learning model, dubbed variational imbalanced regression (VIR), which not only performs well in imbalanced regression but naturally produces reasonable uncertainty estimation as a byproduct. Different from typical variational autoencoders assuming I.I.D. representations (a data point's representation is not directly affected by other data points), our VIR borrows data with similar regression labels to compute the latent representation's variational distribution; furthermore, different from deterministic regression models producing point estimates, VIR predicts the entire normal-inverse-gamma distributions and modulates the associated conjugate distributions to impose probabilistic reweighting on the imbalanced data, thereby providing better uncertainty estimation. Experiments in several real-world datasets show that our VIR can outperform state-of-the-art imbalanced regression models in terms of both accuracy and uncertainty estimation. Code will soon be available at \url{//github.com/Wang-ML-Lab/variational-imbalanced-regression}.

Distributed optimization methods with random communication skips are gaining increasing attention due to their proven benefits in accelerating communication complexity. Nevertheless, existing research mainly focuses on centralized communication protocols for strongly convex deterministic settings. In this work, we provide a decentralized optimization method called RandCom, which incorporates probabilistic local updates. We analyze the performance of RandCom in stochastic non-convex, convex, and strongly convex settings and demonstrate its ability to asymptotically reduce communication overhead by the probability of communication. Additionally, we prove that RandCom achieves linear speedup as the number of nodes increases. In stochastic strongly convex settings, we further prove that RandCom can achieve linear speedup with network-independent stepsizes. Moreover, we apply RandCom to federated learning and provide positive results concerning the potential for achieving linear speedup and the suitability of the probabilistic local update approach for non-convex settings.

We introduce Ferret, a new Multimodal Large Language Model (MLLM) capable of understanding spatial referring of any shape or granularity within an image and accurately grounding open-vocabulary descriptions. To unify referring and grounding in the LLM paradigm, Ferret employs a novel and powerful hybrid region representation that integrates discrete coordinates and continuous features jointly to represent a region in the image. To extract the continuous features of versatile regions, we propose a spatial-aware visual sampler, adept at handling varying sparsity across different shapes. Consequently, Ferret can accept diverse region inputs, such as points, bounding boxes, and free-form shapes. To bolster the desired capability of Ferret, we curate GRIT, a comprehensive refer-and-ground instruction tuning dataset including 1.1M samples that contain rich hierarchical spatial knowledge, with 95K hard negative data to promote model robustness. The resulting model not only achieves superior performance in classical referring and grounding tasks, but also greatly outperforms existing MLLMs in region-based and localization-demanded multimodal chatting. Our evaluations also reveal a significantly improved capability of describing image details and a remarkable alleviation in object hallucination. Code and data will be available at //github.com/apple/ml-ferret

We present RoboHive, a comprehensive software platform and ecosystem for research in the field of Robot Learning and Embodied Artificial Intelligence. Our platform encompasses a diverse range of pre-existing and novel environments, including dexterous manipulation with the Shadow Hand, whole-arm manipulation tasks with Franka and Fetch robots, quadruped locomotion, among others. Included environments are organized within and cover multiple domains such as hand manipulation, locomotion, multi-task, multi-agent, muscles, etc. In comparison to prior works, RoboHive offers a streamlined and unified task interface taking dependency on only a minimal set of well-maintained packages, features tasks with high physics fidelity and rich visual diversity, and supports common hardware drivers for real-world deployment. The unified interface of RoboHive offers a convenient and accessible abstraction for algorithmic research in imitation, reinforcement, multi-task, and hierarchical learning. Furthermore, RoboHive includes expert demonstrations and baseline results for most environments, providing a standard for benchmarking and comparisons. Details: //sites.google.com/view/robohive

We present Strokes2Surface, an offline geometry reconstruction pipeline that recovers well-connected curve networks from imprecise 4D sketches to bridge concept design and digital modeling stages in architectural design. The input to our pipeline consists of 3D strokes' polyline vertices and their timestamps as the 4th dimension, along with additional metadata recorded throughout sketching. Inspired by architectural sketching practices, our pipeline combines a classifier and two clustering models to achieve its goal. First, with a set of extracted hand-engineered features from the sketch, the classifier recognizes the type of individual strokes between those depicting boundaries (Shape strokes) and those depicting enclosed areas (Scribble strokes). Next, the two clustering models parse strokes of each type into distinct groups, each representing an individual edge or face of the intended architectural object. Curve networks are then formed through topology recovery of consolidated Shape clusters and surfaced using Scribble clusters guiding the cycle discovery. Our evaluation is threefold: We confirm the usability of the Strokes2Surface pipeline in architectural design use cases via a user study, we validate our choice of features via statistical analysis and ablation studies on our collected dataset, and we compare our outputs against a range of reconstructions computed using alternative methods.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.

北京阿比特科技有限公司