亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A filtered Lie splitting scheme is proposed for the time integration of the cubic nonlinear Schr\"odinger equation on the two-dimensional torus $\mathbb{T}^2$. The scheme is analyzed in a framework of discrete Bourgain spaces, which allows us to consider initial data with low regularity; more precisely initial data in $H^s(\mathbb{T}^2)$ with $s>0$. In this way, the usual stability restriction to smooth Sobolev spaces with index $s>1$ is overcome. Rates of convergence of order $\tau^{s/2}$ in $L^2(\mathbb{T}^2)$ at this regularity level are proved. Numerical examples illustrate that these convergence results are sharp.

相關內容

In this paper we prove convergence rates for time discretisation schemes for semi-linear stochastic evolution equations with additive or multiplicative Gaussian noise, where the leading operator $A$ is the generator of a strongly continuous semigroup $S$ on a Hilbert space $X$, and the focus is on non-parabolic problems. The main results are optimal bounds for the uniform strong error $$\mathrm{E}_{k}^{\infty} := \Big(\mathbb{E} \sup_{j\in \{0, \ldots, N_k\}} \|U(t_j) - U^j\|^p\Big)^{1/p},$$ where $p \in [2,\infty)$, $U$ is the mild solution, $U^j$ is obtained from a time discretisation scheme, $k$ is the step size, and $N_k = T/k$. The usual schemes such as splitting/exponential Euler, implicit Euler, and Crank-Nicolson, etc.\ are included as special cases. Under conditions on the nonlinearity and the noise we show - $\mathrm{E}_{k}^{\infty}\lesssim k \log(T/k)$ (linear equation, additive noise, general $S$); - $\mathrm{E}_{k}^{\infty}\lesssim \sqrt{k} \log(T/k)$ (nonlinear equation, multiplicative noise, contractive $S$); - $\mathrm{E}_{k}^{\infty}\lesssim k \log(T/k)$ (nonlinear wave equation, multiplicative noise). The logarithmic factor can be removed if the splitting scheme is used with a (quasi)-contractive $S$. The obtained bounds coincide with the optimal bounds for SDEs. Most of the existing literature is concerned with bounds for the simpler pointwise strong error $$\mathrm{E}_k:=\bigg(\sup_{j\in \{0,\ldots,N_k\}}\mathbb{E} \|U(t_j) - U^{j}\|^p\bigg)^{1/p}.$$ Applications to Maxwell equations, Schr\"odinger equations, and wave equations are included. For these equations our results improve and reprove several existing results with a unified method.

In this paper, we will show the $L^p$-resolvent estimate for the finite element approximation of the Stokes operator for $p \in \left( \frac{2N}{N+2}, \frac{2N}{N-2} \right)$, where $N \ge 2$ is the dimension of the domain. It is expected that this estimate can be applied to error estimates for finite element approximation of the non-stationary Navier--Stokes equations, since studies in this direction are successful in numerical analysis of nonlinear parabolic equations. To derive the resolvent estimate, we introduce the solution of the Stokes resolvent problem with a discrete external force. We then obtain local energy error estimate according to a novel localization technique and establish global $L^p$-type error estimates. The restriction for $p$ is caused by the treatment of lower-order terms appearing in the local energy error estimate. Our result may be a breakthrough in the $L^p$-theory of finite element methods for the non-stationary Navier--Stokes equations.

We present and analyze a high-order discontinuous Galerkin method for the space discretization of the wave propagation model in thermo-poroelastic media. The proposed scheme supports general polytopal grids. Stability analysis and $hp$-version error estimates in suitable energy norms are derived for the semi-discrete problem. The fully-discrete scheme is then obtained based on employing an implicit Newmark-$\beta$ time integration scheme. A wide set of numerical simulations is reported, both for the verification of the theoretical estimates and for examples of physical interest. A comparison with the results of the poroelastic model is provided too, highlighting the differences between the predictive capabilities of the two models.

The weak maximum principle of the isoparametric finite element method is proved for the Poisson equation under the Dirichlet boundary condition in a (possibly concave) curvilinear polyhedral domain with edge openings smaller than $\pi$, which include smooth domains and smooth deformations of convex polyhedra. The proof relies on the analysis of a dual elliptic problem with a discontinuous coefficient matrix arising from the isoparametric finite elements. Therefore, the standard $H^2$ elliptic regularity which is required in the proof of the weak maximum principle in the literature does not hold for this dual problem. To overcome this difficulty, we have decomposed the solution into a smooth part and a nonsmooth part, and estimated the two parts by $H^2$ and $W^{1,p}$ estimates, respectively. As an application of the weak maximum principle, we have proved a maximum-norm best approximation property of the isoparametric finite element method for the Poisson equation in a curvilinear polyhedron. The proof contains non-trivial modifications of Schatz's argument due to the non-conformity of the iso-parametric finite elements, which requires us to construct a globally smooth flow map which maps the curvilinear polyhedron to a perturbed larger domain on which we can establish the $W^{1,\infty}$ regularity estimate of the Poisson equation uniformly with respect to the perturbation.

Many machine learning problems can be framed in the context of estimating functions, and often these are time-dependent functions that are estimated in real-time as observations arrive. Gaussian processes (GPs) are an attractive choice for modeling real-valued nonlinear functions due to their flexibility and uncertainty quantification. However, the typical GP regression model suffers from several drawbacks: 1) Conventional GP inference scales $O(N^{3})$ with respect to the number of observations; 2) Updating a GP model sequentially is not trivial; and 3) Covariance kernels typically enforce stationarity constraints on the function, while GPs with non-stationary covariance kernels are often intractable to use in practice. To overcome these issues, we propose a sequential Monte Carlo algorithm to fit infinite mixtures of GPs that capture non-stationary behavior while allowing for online, distributed inference. Our approach empirically improves performance over state-of-the-art methods for online GP estimation in the presence of non-stationarity in time-series data. To demonstrate the utility of our proposed online Gaussian process mixture-of-experts approach in applied settings, we show that we can sucessfully implement an optimization algorithm using online Gaussian process bandits.

We design and compute first-order implicit-in-time variational schemes with high-order spatial discretization for initial value gradient flows in generalized optimal transport metric spaces. We first review some examples of gradient flows in generalized optimal transport spaces from the Onsager principle. We then use a one-step time relaxation optimization problem for time-implicit schemes, namely generalized Jordan-Kinderlehrer-Otto schemes. Their minimizing systems satisfy implicit-in-time schemes for initial value gradient flows with first-order time accuracy. We adopt the first-order optimization scheme ALG2 (Augmented Lagrangian method) and high-order finite element methods in spatial discretization to compute the one-step optimization problem. This allows us to derive the implicit-in-time update of initial value gradient flows iteratively. We remark that the iteration in ALG2 has a simple-to-implement point-wise update based on optimal transport and Onsager's activation functions. The proposed method is unconditionally stable for convex cases. Numerical examples are presented to demonstrate the effectiveness of the methods in two-dimensional PDEs, including Wasserstein gradient flows, Fisher--Kolmogorov-Petrovskii-Piskunov equation, and two and four species reversible reaction-diffusion systems.

In this paper we study multi-robot path planning for persistent monitoring tasks. We consider the case where robots have a limited battery capacity with a discharge time $D$. We represent the areas to be monitored as the vertices of a weighted graph. For each vertex, there is a constraint on the maximum allowable time between robot visits, called the latency. The objective is to find the minimum number of robots that can satisfy these latency constraints while also ensuring that the robots periodically charge at a recharging depot. The decision version of this problem is known to be PSPACE-complete. We present a $O(\frac{\log D}{\log \log D}\log \rho)$ approximation algorithm for the problem where $\rho$ is the ratio of the maximum and the minimum latency constraints. We also present an orienteering based heuristic to solve the problem and show empirically that it typically provides higher quality solutions than the approximation algorithm. We extend our results to provide an algorithm for the problem of minimizing the maximum weighted latency given a fixed number of robots. We evaluate our algorithms on large problem instances in a patrolling scenario and in a wildfire monitoring application. We also compare the algorithms with an existing solver on benchmark instances.

Following the breakthrough work of Tardos in the bit-complexity model, Vavasis and Ye gave the first exact algorithm for linear programming in the real model of computation with running time depending only on the constraint matrix. For solving a linear program (LP) $\max\, c^\top x,\: Ax = b,\: x \geq 0,\: A \in \mathbb{R}^{m \times n}$, Vavasis and Ye developed a primal-dual interior point method using a 'layered least squares' (LLS) step, and showed that $O(n^{3.5} \log (\bar{\chi}_A+n))$ iterations suffice to solve (LP) exactly, where $\bar{\chi}_A$ is a condition measure controlling the size of solutions to linear systems related to $A$. Monteiro and Tsuchiya, noting that the central path is invariant under rescalings of the columns of $A$ and $c$, asked whether there exists an LP algorithm depending instead on the measure $\bar{\chi}^*_A$, defined as the minimum $\bar{\chi}_{AD}$ value achievable by a column rescaling $AD$ of $A$, and gave strong evidence that this should be the case. We resolve this open question affirmatively. Our first main contribution is an $O(m^2 n^2 + n^3)$ time algorithm which works on the linear matroid of $A$ to compute a nearly optimal diagonal rescaling $D$ satisfying $\bar{\chi}_{AD} \leq n(\bar{\chi}^*)^3$. This algorithm also allows us to approximate the value of $\bar{\chi}_A$ up to a factor $n (\bar{\chi}^*)^2$. As our second main contribution, we develop a scaling invariant LLS algorithm, together with a refined potential function based analysis for LLS algorithms in general. With this analysis, we derive an improved $O(n^{2.5} \log n\log (\bar{\chi}^*_A+n))$ iteration bound for optimally solving (LP) using our algorithm. The same argument also yields a factor $n/\log n$ improvement on the iteration complexity bound of the original Vavasis-Ye algorithm.

Since their introduction the Trasformer architectures emerged as the dominating architectures for both natural language processing and, more recently, computer vision applications. An intrinsic limitation of this family of "fully-attentive" architectures arises from the computation of the dot-product attention, which grows both in memory consumption and number of operations as $O(n^2)$ where $n$ stands for the input sequence length, thus limiting the applications that require modeling very long sequences. Several approaches have been proposed so far in the literature to mitigate this issue, with varying degrees of success. Our idea takes inspiration from the world of lossy data compression (such as the JPEG algorithm) to derive an approximation of the attention module by leveraging the properties of the Discrete Cosine Transform. An extensive section of experiments shows that our method takes up less memory for the same performance, while also drastically reducing inference time. This makes it particularly suitable in real-time contexts on embedded platforms. Moreover, we assume that the results of our research might serve as a starting point for a broader family of deep neural models with reduced memory footprint. The implementation will be made publicly available at //github.com/cscribano/DCT-Former-Public

This work outlines a fast, high-precision time-domain solver for scalar, electromagnetic and gravitational perturbations on hyperboloidal foliations of Kerr space-times. Time-domain Teukolsky equation solvers have typically used explicit methods, which numerically violate Noether symmetries and are Courant-limited. These restrictions can limit the performance of explicit schemes when simulating long-time extreme mass ratio inspirals, expected to appear in LISA band for 2-5 years. We thus explore symmetric (exponential, Pad\'e or Hermite) integrators, which are unconditionally stable and known to preserve certain Noether symmetries and phase-space volume. For linear hyperbolic equations, these implicit integrators can be cast in explicit form, making them well-suited for long-time evolution of black hole perturbations. The 1+1 modal Teukolsky equation is discretized in space using polynomial collocation methods and reduced to a linear system of ordinary differential equations, coupled via mode-coupling arrays and discretized (matrix) differential operators. We use a matricization technique to cast the mode-coupled system in a form amenable to a method-of-lines framework, which simplifies numerical implementation and enables efficient parallelization on CPU and GPU architectures. We test our numerical code by studying late-time tails of Kerr spacetime perturbations in the sub-extremal and extremal cases.

北京阿比特科技有限公司