Overfitting describes a machine learning phenomenon where the model fits too closely to the training data, resulting in poor generalization. While this occurrence is thoroughly documented for many forms of supervised learning, it is not well examined in the context of unsupervised learning. In this work we examine the nature of overfitting in unsupervised contrastive learning. We show that overfitting can indeed occur and the mechanism behind overfitting.
Against the backdrop of enthusiasm for large language models (LLMs), there is an urgent need to scientifically assess their capabilities and shortcomings. This is nontrivial in part because it is difficult to find tasks which the models have not encountered during training. Utilizing symbolic graphics programs, we propose a domain well-suited to test multiple spatial-semantic reasoning skills of LLMs. Popular in computer graphics, these programs procedurally generate visual data. While LLMs exhibit impressive skills in general program synthesis and analysis, symbolic graphics programs offer a new layer of evaluation: they allow us to test an LLM's ability to answer different-grained semantic-level questions of the images or 3D geometries without a vision encoder. To semantically understand the symbolic programs, LLMs would need to possess the ability to "imagine" and reason how the corresponding graphics content would look with only the symbolic description. We use this task to evaluate LLMs by creating a large benchmark for the semantic visual understanding of symbolic graphics programs, built procedurally with minimal human effort. Particular emphasis is placed on transformations of images that leave the image level semantics invariant while introducing significant changes to the underlying program. We evaluate commercial and open-source LLMs on our benchmark to assess their ability to reason about visual output of programs, finding that LLMs considered stronger at reasoning generally perform better. Lastly, we introduce a novel method to improve this ability -- Symbolic Instruction Tuning (SIT), in which the LLM is finetuned with pre-collected instruction data on symbolic graphics programs. Interestingly, we find that SIT not only improves LLM's understanding on symbolic programs, but it also improves general reasoning ability on various other benchmarks.
Protecting the intellectual property of machine learning models is a hot topic and many watermarking schemes for deep neural networks have been proposed in the literature. Unfortunately, prior work largely neglected the investigation of watermarking techniques for other types of models, including decision tree ensembles, which are a state-of-the-art model for classification tasks on non-perceptual data. In this paper, we present the first watermarking scheme designed for decision tree ensembles, focusing in particular on random forest models. We discuss watermark creation and verification, presenting a thorough security analysis with respect to possible attacks. We finally perform an experimental evaluation of the proposed scheme, showing excellent results in terms of accuracy and security against the most relevant threats.
Transformer-based language models have shown an excellent ability to effectively capture and utilize contextual information. Although various analysis techniques have been used to quantify and trace the contribution of single contextual cues to a target task such as subject-verb agreement or coreference resolution, scenarios in which multiple relevant cues are available in the context remain underexplored. In this paper, we investigate how language models handle gender agreement when multiple gender cue words are present, each capable of independently disambiguating a target gender pronoun. We analyze two widely used Transformer-based models: BERT, an encoder-based, and GPT-2, a decoder-based model. Our analysis employs two complementary approaches: context mixing analysis, which tracks information flow within the model, and a variant of activation patching, which measures the impact of cues on the model's prediction. We find that BERT tends to prioritize the first cue in the context to form both the target word representations and the model's prediction, while GPT-2 relies more on the final cue. Our findings reveal striking differences in how encoder-based and decoder-based models prioritize and use contextual information for their predictions.
In spite of the plethora of success stories with graph neural networks (GNNs) on modelling graph-structured data, they are notoriously vulnerable to over-squashing, whereby tasks necessitate the mixing of information between distance pairs of nodes. To address this problem, prior work suggests rewiring the graph structure to improve information flow. Alternatively, a significant body of research has dedicated itself to discovering and precomputing bottleneck-free graph structures to ameliorate over-squashing. One well regarded family of bottleneck-free graphs within the mathematical community are expander graphs, with prior work$\unicode{x2014}$Expander Graph Propagation (EGP)$\unicode{x2014}$proposing the use of a well-known expander graph family$\unicode{x2014}$the Cayley graphs of the $\mathrm{SL}(2,\mathbb{Z}_n)$ special linear group$\unicode{x2014}$as a computational template for GNNs. However, in EGP the computational graphs used are truncated to align with a given input graph. In this work, we show that truncation is detrimental to the coveted expansion properties. Instead, we propose CGP, a method to propagate information over a complete Cayley graph structure, thereby ensuring it is bottleneck-free to better alleviate over-squashing. Our empirical evidence across several real-world datasets not only shows that CGP recovers significant improvements as compared to EGP, but it is also akin to or outperforms computationally complex graph rewiring techniques.
The capabilities of large language models (LLMs) have raised concerns about their potential to create and propagate convincing narratives. Here, we study their performance in detecting convincing arguments to gain insights into LLMs' persuasive capabilities without directly engaging in experimentation with humans. We extend a dataset by Durmus and Cardie (2018) with debates, votes, and user traits and propose tasks measuring LLMs' ability to (1) distinguish between strong and weak arguments, (2) predict stances based on beliefs and demographic characteristics, and (3) determine the appeal of an argument to an individual based on their traits. We show that LLMs perform on par with humans in these tasks and that combining predictions from different LLMs yields significant performance gains, surpassing human performance. The data and code released with this paper contribute to the crucial effort of continuously evaluating and monitoring LLMs' capabilities and potential impact. (//go.epfl.ch/persuasion-llm)
Feature attribution methods are popular in interpretable machine learning. These methods compute the attribution of each input feature to represent its importance, but there is no consensus on the definition of "attribution", leading to many competing methods with little systematic evaluation, complicated in particular by the lack of ground truth attribution. To address this, we propose a dataset modification procedure to induce such ground truth. Using this procedure, we evaluate three common methods: saliency maps, rationales, and attentions. We identify several deficiencies and add new perspectives to the growing body of evidence questioning the correctness and reliability of these methods applied on datasets in the wild. We further discuss possible avenues for remedy and recommend new attribution methods to be tested against ground truth before deployment. The code is available at \url{//github.com/YilunZhou/feature-attribution-evaluation}.
Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.
Graph Neural Networks (GNNs) for representation learning of graphs broadly follow a neighborhood aggregation framework, where the representation vector of a node is computed by recursively aggregating and transforming feature vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs in capturing different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance.
We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.