Existing representation-based methods usually conduct industrial anomaly detection in two stages: obtain feature representations with a pre-trained model and perform distance measures for anomaly detection. Among them, K-nearest neighbor (KNN) retrieval-based anomaly detection methods show promising results. However, the features are not fully exploited as these methods ignore domain bias of pre-trained models and the difference of local density in feature space, which limits the detection performance. In this paper, we propose Reducing Biases (REB) in representation by considering the domain bias and building a self-supervised learning task for better domain adaption with a defect generation strategy (DefectMaker) that ensures a strong diversity in the synthetic defects. Additionally, we propose a local-density KNN (LDKNN) to reduce the local density bias in the feature space and obtain effective anomaly detection. The proposed REB method achieves a promising result of 99.5\% Im.AUROC on the widely used MVTec AD, with smaller backbone networks such as Vgg11 and Resnet18. The method also achieves an impressive 88.8\% Im.AUROC on the MVTec LOCO AD dataset and a remarkable 96.0\% on the BTAD dataset, outperforming other representation-based approaches. These results indicate the effectiveness and efficiency of REB for practical industrial applications. Code://github.com/ShuaiLYU/REB.
Integrating inertial measurement units (IMUs) with large language models (LLMs) advances multimodal AI by enhancing human activity understanding. We introduce SensorCaps, a dataset of 26,288 IMU-derived activity narrations, and OpenSQA, an instruction-following dataset with 257,562 question-answer pairs. Combining LIMU-BERT and Llama, we develop LLaSA, a Large Multimodal Agent capable of interpreting and responding to activity and motion analysis queries. Our evaluation demonstrates LLaSA's effectiveness in activity classification and question answering, highlighting its potential in healthcare, sports science, and human-computer interaction. These contributions advance sensor-aware language models and open new research avenues. Our code repository and datasets can be found on //github.com/BASHLab/LLaSA.
Despite achieving promising fairness-error trade-offs, in-processing mitigation techniques for group fairness cannot be employed in numerous practical applications with limited computation resources or no access to the training pipeline of the prediction model. In these situations, post-processing is a viable alternative. However, current methods are tailored to specific problem settings and fairness definitions and hence, are not as broadly applicable as in-processing. In this work, we propose a framework that turns any regularized in-processing method into a post-processing approach. This procedure prescribes a way to obtain post-processing techniques for a much broader range of problem settings than the prior post-processing literature. We show theoretically and through extensive experiments that our framework preserves the good fairness-error trade-offs achieved with in-processing and can improve over the effectiveness of prior post-processing methods. Finally, we demonstrate several advantages of a modular mitigation strategy that disentangles the training of the prediction model from the fairness mitigation, including better performance on tasks with partial group labels.
The ability of CodeLLMs to generate executable and functionally correct code at the repository-level scale remains largely unexplored. We introduce RepoExec, a novel benchmark for evaluating code generation at the repository-level scale. RepoExec focuses on three main aspects: executability, functional correctness through automated test case generation with high coverage rate, and carefully crafted cross-file contexts to accurately generate code. Our work explores a controlled scenario where developers specify necessary code dependencies, challenging the model to integrate these accurately. Experiments show that while pretrained LLMs outperform instruction-tuned models in correctness, the latter excel in utilizing provided dependencies and demonstrating debugging capabilities. We also introduce a new instruction-tuned dataset that focuses on code dependencies and demonstrate that CodeLLMs fine-tuned on our dataset have a better capability to leverage these dependencies effectively. RepoExec aims to provide a comprehensive evaluation of code functionality and alignment with developer intent, paving the way for more reliable and applicable CodeLLMs in real-world scenarios. The dataset and source code can be found at~\url{//github.com/FSoft-AI4Code/RepoExec}.
Recent advances in discriminative and generative pretraining have yielded geometry estimation models with strong generalization capabilities. While discriminative monocular geometry estimation methods rely on large-scale fine-tuning data to achieve zero-shot generalization, several generative-based paradigms show the potential of achieving impressive generalization performance on unseen scenes by leveraging pre-trained diffusion models and fine-tuning on even a small scale of synthetic training data. Frustratingly, these models are trained with different recipes on different datasets, making it hard to find out the critical factors that determine the evaluation performance. Besides, current geometry evaluation benchmarks have two main drawbacks that may prevent the development of the field, i.e., limited scene diversity and unfavorable label quality. To resolve the above issues, (1) we build fair and strong baselines in a unified codebase for evaluating and analyzing the geometry estimation models; (2) we evaluate monocular geometry estimators on more challenging benchmarks for geometry estimation task with diverse scenes and high-quality annotations. Our results reveal that pre-trained using large data, discriminative models such as DINOv2, can outperform generative counterparts with a small amount of high-quality synthetic data under the same training configuration, which suggests that fine-tuning data quality is a more important factor than the data scale and model architecture. Our observation also raises a question: if simply fine-tuning a general vision model such as DINOv2 using a small amount of synthetic depth data produces SOTA results, do we really need complex generative models for depth estimation? We believe this work can propel advancements in geometry estimation tasks as well as a wide range of downstream applications.
Machine unlearning is a promising paradigm for removing unwanted data samples from a trained model, towards ensuring compliance with privacy regulations and limiting harmful biases. Although unlearning has been shown in, e.g., classification and recommendation systems, its potential in medical image-to-image translation, specifically in image recon-struction, has not been thoroughly investigated. This paper shows that machine unlearning is possible in MRI tasks and has the potential to benefit for bias removal. We set up a protocol to study how much shared knowledge exists between datasets of different organs, allowing us to effectively quantify the effect of unlearning. Our study reveals that combining training data can lead to hallucinations and reduced image quality in the reconstructed data. We use unlearning to remove hallucinations as a proxy exemplar of undesired data removal. Indeed, we show that machine unlearning is possible without full retraining. Furthermore, our observations indicate that maintaining high performance is feasible even when using only a subset of retain data. We have made our code publicly accessible.
Gait recognition, a growing field in biological recognition technology, utilizes distinct walking patterns for accurate individual identification. However, existing methods lack the incorporation of temporal information. To reach the full potential of gait recognition, we advocate for the consideration of temporal features at varying granularities and spans. This paper introduces a novel framework, GaitGS, which aggregates temporal features simultaneously in both granularity and span dimensions. Specifically, the Multi-Granularity Feature Extractor (MGFE) is designed to capture micro-motion and macro-motion information at fine and coarse levels respectively, while the Multi-Span Feature Extractor (MSFE) generates local and global temporal representations. Through extensive experiments on two datasets, our method demonstrates state-of-the-art performance, achieving Rank-1 accuracy of 98.2%, 96.5%, and 89.7% on CASIA-B under different conditions, and 97.6% on OU-MVLP. The source code will be available at //github.com/Haijun-Xiong/GaitGS.
Large pre-trained models have demonstrated dominant performances in multiple areas, where the consistency between pre-training and fine-tuning is the key to success. However, few works reported satisfactory results of pre-trained models for the machine anomalous sound detection (ASD) task. This may be caused by the inconsistency of the pre-trained model and the inductive bias of machine audio, resulting in inconsistency in data and architecture. Thus, we propose AnoPatch which utilizes a ViT backbone pre-trained on AudioSet and fine-tunes it on machine audio. It is believed that machine audio is more related to audio datasets than speech datasets, and modeling it from patch level suits the sparsity of machine audio. As a result, AnoPatch showcases state-of-the-art (SOTA) performances on the DCASE 2020 ASD dataset and the DCASE 2023 ASD dataset. We also compare multiple pre-trained models and empirically demonstrate that better consistency yields considerable improvement.
Multiparty computation approaches to secure neural network inference commonly rely on garbled circuits for securely executing nonlinear activation functions. However, garbled circuits require excessive communication between server and client, impose significant storage overheads, and incur large runtime penalties. To reduce these costs, we propose an alternative to garbled circuits: Tabula, an algorithm based on secure lookup tables. Our approach precomputes lookup tables during an offline phase that contains the result of all possible nonlinear function calls. Because these tables incur exponential storage costs in the number of operands and the precision of the input values, we use quantization to reduce these storage costs to make this approach practical. This enables an online phase where securely computing the result of a nonlinear function requires just a single round of communication, with communication cost equal to twice the number of bits of the input to the nonlinear function. In practice our approach costs 2 bytes of communication per nonlinear function call in the online phase. Compared to garbled circuits with 8-bit quantized inputs, when computing individual nonlinear functions during the online phase, experiments show Tabula with 8-bit activations uses between $280$-$560 \times$ less communication, is over $100\times$ faster, and uses a comparable (within a factor of 2) amount of storage; compared against other state-of-the-art protocols Tabula achieves greater than $40\times$ communication reduction. This leads to significant performance gains over garbled circuits with quantized inputs during the online phase of secure inference of neural networks: Tabula reduces end-to-end inference communication by up to $9 \times$ and achieves an end-to-end inference speedup of up to $50 \times$, while imposing comparable storage and offline preprocessing costs.
Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive and memory intensive, so it is difficult to effectively execute them on some resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we firstly propose a novel transformer distillation method that is a specially designed knowledge distillation (KD) method for transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large teacher BERT can be well transferred to a small student TinyBERT. Moreover, we introduce a new two-stage learning framework for TinyBERT, which performs transformer distillation at both the pre-training and task-specific learning stages. This framework ensures that TinyBERT can capture both the general-domain and task-specific knowledge of the teacher BERT. TinyBERT is empirically effective and achieves comparable results with BERT in GLUE datasets, while being 7.5x smaller and 9.4x faster on inference. TinyBERT is also significantly better than state-of-the-art baselines, even with only about 28% parameters and 31% inference time of baselines.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.