亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Space-air-ground integrated networks (SAGINs), which have emerged as an expansion of terrestrial networks, provide flexible access, ubiquitous coverage, high-capacity backhaul, and emergency/disaster recovery for mobile users (MUs). While the massive benefits brought by SAGIN may improve the quality of service, unauthorized access to SAGIN entities is potentially dangerous. At present, conventional crypto-based authentication is facing challenges, such as the inability to provide continuous and transparent protection for MUs. In this article, we propose an AI-oriented two-phase multi-factor authentication scheme (ATMAS) by introducing intelligence to authentication. The satellite and network control center collaborate on continuous authentication, while unique spatial-temporal features, including service features and geographic features, are utilized to enhance the system security. Our further security analysis and performance evaluations show that ATMAS has proper security characteristics which can meet various security requirements. Moreover, we shed light on lightweight and efficient authentication mechanism design through a proper combination of spatial-temporal factors.

相關內容

The fight between discriminative versus generative goes deep, in both the study of artificial and natural intelligence. In our view, both camps have complementary values. So, we sought to synergistically combine them. Here, we propose a methodology to convert deep discriminative networks to kernel generative networks. We leveraged the fact that deep models, including both random forests and deep networks, learn internal representations which are unions of polytopes with affine activation functions to conceptualize them both as generalized partitioning rules. We replace the affine function in each polytope populated by the training data with Gaussian kernel that results in a generative model. Theoretically, we derive the conditions under which our generative models are a consistent estimator of the corresponding class conditional density. Moreover, our proposed models obtain well calibrated posteriors for in-distribution, and extrapolate beyond the training data to handle out-of-distribution inputs reasonably. We believe this approach may be an important step in unifying the thinking and the approaches across the discriminative and the generative divide.

Unmanned aerial vehicle (UAV)-enabled integrated sensing and communication (ISAC) has attracted growing research interests in the context of sixth-generation (6G) wireless networks, in which UAVs will be exploited as aerial wireless platforms to provide better coverage and enhanced sensing and communication (S&C) services. However, due to the UAVs' size, weight, and power (SWAP) constraints, controllable mobility, and line-of-sight (LoS) air-ground channels, UAV-enabled ISAC introduces both new opportunities and challenges. This article provides an overview of UAV-enabled ISAC, and proposes various solutions for optimizing the S&C performance. In particular, we first introduce UAV-enabled joint S&C, and discuss UAV motion control, wireless resource allocation, and interference management for the cases of single and multiple UAVs. Then, we present two application scenarios for exploiting the synergy between S&C, namely sensing-assisted UAV communication and communication-assisted UAV sensing. Finally, we highlight several interesting research directions to guide and motivate future work.

As the Metaverse continues to grow, the need for efficient communication and intelligent content generation becomes increasingly important. Semantic communication focuses on conveying meaning and understanding from user inputs, while AI-Generated Content utilizes artificial intelligence to create digital content and experiences. Integrated Semantic Communication and AI-Generated Content (ISGC) has attracted a lot of attentions recently, which transfers semantic information from user inputs, generates digital content, and renders graphics for Metaverse. In this paper, we introduce a unified framework that captures ISGC two primary benefits, including integration gain for optimized resource allocation and coordination gain for goal-oriented high-quality content generation to improve immersion from both communication and content perspectives. We also classify existing ISGC solutions, analyze the major components of ISGC, and present several use cases. We then construct a case study based on the diffusion model to identify an optimal resource allocation strategy for performing semantic extraction, content generation, and graphic rendering in the Metaverse. Finally, we discuss several open research issues, encouraging further exploring the potential of ISGC and its related applications in the Metaverse.

A brain-computer interface (BCI) is a technology that enables direct communication between the brain and an external device or computer system. It allows individuals to interact with the device using only their thoughts, and holds immense potential for a wide range of applications in medicine, rehabilitation, and human augmentation. An electroencephalogram (EEG) and event-related potential (ERP)-based speller system is a type of BCI that allows users to spell words without using a physical keyboard, but instead by recording and interpreting brain signals under different stimulus presentation paradigms. Conventional non-adaptive paradigms treat each word selection independently, leading to a lengthy learning process. To improve the sampling efficiency, we cast the problem as a sequence of best-arm identification tasks in multi-armed bandits. Leveraging pre-trained large language models (LLMs), we utilize the prior knowledge learned from previous tasks to inform and facilitate subsequent tasks. To do so in a coherent way, we propose a sequential top-two Thompson sampling (STTS) algorithm under the fixed-confidence setting and the fixed-budget setting. We study the theoretical property of the proposed algorithm, and demonstrate its substantial empirical improvement through both synthetic data analysis as well as a P300 BCI speller simulator example.

Few-shot learning (FSL) has emerged as an effective learning method and shows great potential. Despite the recent creative works in tackling FSL tasks, learning valid information rapidly from just a few or even zero samples still remains a serious challenge. In this context, we extensively investigated 200+ latest papers on FSL published in the past three years, aiming to present a timely and comprehensive overview of the most recent advances in FSL along with impartial comparisons of the strengths and weaknesses of the existing works. For the sake of avoiding conceptual confusion, we first elaborate and compare a set of similar concepts including few-shot learning, transfer learning, and meta-learning. Furthermore, we propose a novel taxonomy to classify the existing work according to the level of abstraction of knowledge in accordance with the challenges of FSL. To enrich this survey, in each subsection we provide in-depth analysis and insightful discussion about recent advances on these topics. Moreover, taking computer vision as an example, we highlight the important application of FSL, covering various research hotspots. Finally, we conclude the survey with unique insights into the technology evolution trends together with potential future research opportunities in the hope of providing guidance to follow-up research.

Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.

Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.

北京阿比特科技有限公司