亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Search result snippets are crucial in modern search engines, providing users with a quick overview of a website's content. Snippets help users determine the relevance of a document to their information needs, and in certain scenarios even enable them to satisfy those needs without visiting web documents. Hence, it is crucial for snippets to reliably represent the content of their corresponding documents. While this may be a straightforward requirement for some queries, it can become challenging in the complex domain of healthcare, and can lead to misinformation. This paper aims to examine snippets' reliability in representing their corresponding documents, specifically in the health domain. To achieve this, we conduct a series of user studies using Google's search results, where participants are asked to infer viewpoints of search results pertaining to queries about the effectiveness of a medical intervention for a medical condition, based solely on their titles and snippets. Our findings reveal that a considerable portion of Google's snippets (28%) failed to present any viewpoint on the intervention's effectiveness, and that 35% were interpreted by participants as having a different viewpoint compared to their corresponding documents. To address this issue, we propose a snippet extraction solution tailored directly to users' information needs, i.e., extracting snippets that summarize documents' viewpoints regarding the intervention and condition that appear in the query. User study demonstrates that our information need-focused solution outperforms the mainstream query-based approach. With only 19.67% of snippets generated by our solution reported as not presenting a viewpoint and a mere 20.33% misinterpreted by participants. These results strongly suggest that an information need-focused approach can significantly improve the reliability of extracted snippets in online health search.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 在線 · 系統設計 · 暫退法 · Twitter ·
2024 年 3 月 9 日

Social media users may perceive moderation decisions by the platform differently, which can lead to frustration and dropout. This study investigates users' perceived justice and fairness of online moderation decisions when they are exposed to various illegal versus legal scenarios, retributive versus restorative moderation strategies, and user-moderated versus commercially moderated platforms. We conduct an online experiment on 200 American social media users of Reddit and Twitter. Results show that retributive moderation delivers higher justice and fairness for commercially moderated than for user-moderated platforms in illegal violations; restorative moderation delivers higher fairness for legal violations than illegal ones. We discuss the opportunities for platform policymaking to improve moderation system design.

Data tensors of orders 2 and greater are now routinely being generated. These data collections are increasingly huge and growing. Many scientific and medical data tensors are tensor fields (e.g., images, videos, geographic data) in which the spatial neighborhood contains important information. Directly accessing such large data tensor collections for information has become increasingly prohibitive. We learn approximate full-rank and compact tensor sketches with decompositive representations providing compact space, time and spectral embeddings of tensor fields. All information querying and post-processing on the original tensor field can now be achieved more efficiently and with customizable accuracy as they are performed on these compact factored sketches in latent generative space. We produce optimal rank-r sketchy Tucker decomposition of arbitrary order data tensors by building compact factor matrices from a sample-efficient sub-sampling of tensor slices. Our sample efficient policy is learned via an adaptable stochastic Thompson sampling using Dirichlet distributions with conjugate priors.

When deploying neural networks in real-life situations, the size and computational effort are often the limiting factors. This is especially true in environments where big, expensive hardware is not affordable, like in embedded medical devices, where budgets are often tight. State-of-the-art proposed multiple different lightweight solutions for such use cases, mostly by changing the base model architecture, not taking the input and output resolution into consideration. In this paper, we propose our architecture that takes advantage of the fact that in hardware-limited environments, we often refrain from using the highest available input resolutions to guarantee a higher throughput. Although using lower-resolution input leads to a significant reduction in computing and memory requirements, it may also incur reduced prediction quality. Our architecture addresses this problem by exploiting the fact that we can still utilize high-resolution ground-truths in training. The proposed model inputs lower-resolution images and high-resolution ground truths, which can improve the prediction quality by 5.5% while adding less than 200 parameters to the model. %reducing the frames per second only from 25 to 20. We conduct an extensive analysis to illustrate that our architecture enhances existing state-of-the-art frameworks for lightweight semantic segmentation of cancer in MRI images. We also tested the deployment speed of state-of-the-art lightweight networks and our architecture on Nvidia's Jetson Nano to emulate deployment in resource-constrained embedded scenarios.

Researchers have argued that large language models (LLMs) exhibit high-quality writing capabilities from blogs to stories. However, evaluating objectively the creativity of a piece of writing is challenging. Inspired by the Torrance Test of Creative Thinking (TTCT), which measures creativity as a process, we use the Consensual Assessment Technique [3] and propose the Torrance Test of Creative Writing (TTCW) to evaluate creativity as a product. TTCW consists of 14 binary tests organized into the original dimensions of Fluency, Flexibility, Originality, and Elaboration. We recruit 10 creative writers and implement a human assessment of 48 stories written either by professional authors or LLMs using TTCW. Our analysis shows that LLM-generated stories pass 3-10X less TTCW tests than stories written by professionals. In addition, we explore the use of LLMs as assessors to automate the TTCW evaluation, revealing that none of the LLMs positively correlate with the expert assessments.

Recent research shows that large language models are susceptible to privacy attacks that infer aspects of the training data. However, it is unclear if simpler generative models, like topic models, share similar vulnerabilities. In this work, we propose an attack against topic models that can confidently identify members of the training data in Latent Dirichlet Allocation. Our results suggest that the privacy risks associated with generative modeling are not restricted to large neural models. Additionally, to mitigate these vulnerabilities, we explore differentially private (DP) topic modeling. We propose a framework for private topic modeling that incorporates DP vocabulary selection as a pre-processing step, and show that it improves privacy while having limited effects on practical utility.

Advanced Audio-Visual Speech Recognition (AVSR) systems have been observed to be sensitive to missing video frames, performing even worse than single-modality models. While applying the dropout technique to the video modality enhances robustness to missing frames, it simultaneously results in a performance loss when dealing with complete data input. In this paper, we investigate this contrasting phenomenon from the perspective of modality bias and reveal that an excessive modality bias on the audio caused by dropout is the underlying reason. Moreover, we present the Modality Bias Hypothesis (MBH) to systematically describe the relationship between modality bias and robustness against missing modality in multimodal systems. Building on these findings, we propose a novel Multimodal Distribution Approximation with Knowledge Distillation (MDA-KD) framework to reduce over-reliance on the audio modality and to maintain performance and robustness simultaneously. Finally, to address an entirely missing modality, we adopt adapters to dynamically switch decision strategies. The effectiveness of our proposed approach is evaluated and validated through a series of comprehensive experiments using the MISP2021 and MISP2022 datasets. Our code is available at //github.com/dalision/ModalBiasAVSR

Investigating the increasingly popular domain of short video consumption, this study focuses on the impact of Opinion Polarization (OP), a significant factor in the digital landscape influencing public opinions and social interactions. We analyze OP's effect on viewers' perceptions and behaviors, finding that traditional feedback metrics like likes and watch time fail to fully capture and measure OP. Addressing this gap, our research utilizes Electroencephalogram (EEG) signals to introduce a novel, non-invasive approach for evaluating neural responses to OP, affecting perception and cognition. Empirical analysis reveals OP's considerable impact on viewers' emotions, evidenced by changes in brain activity. Our findings also highlight the potential of EEG data in predicting exposure to polarized short video content, offering a new perspective on the dynamics of short video consumption and a unique method for quantifying OP's effects.

While large language models have achieved remarkable performance on various code generation benchmarks, there have been growing concerns regarding potential contamination of these benchmarks as they may be leaked into pretraining and finetuning data. While recent work has investigated contamination in natural language generation and understanding tasks, there has been less extensive research into how data contamination impacts the evaluation of code generation, which is critical for understanding the robustness and reliability of LLMs in programming contexts. In this work, we perform a comprehensive study of data contamination of popular code generation benchmarks, and precisely quantify their overlap with pretraining corpus through both surface-level and semantic-level matching. In our experiments, we show that there are substantial overlap between popular code generation benchmarks and open training corpus, and models perform significantly better on the subset of the benchmarks where similar solutions are seen during training. We also conduct extensive analysis on the factors that affects model memorization and generalization, such as model size, problem difficulty, and question length. We release all resulting files from our matching pipeline for future research.

Recommender systems play a fundamental role in web applications in filtering massive information and matching user interests. While many efforts have been devoted to developing more effective models in various scenarios, the exploration on the explainability of recommender systems is running behind. Explanations could help improve user experience and discover system defects. In this paper, after formally introducing the elements that are related to model explainability, we propose a novel explainable recommendation model through improving the transparency of the representation learning process. Specifically, to overcome the representation entangling problem in traditional models, we revise traditional graph convolution to discriminate information from different layers. Also, each representation vector is factorized into several segments, where each segment relates to one semantic aspect in data. Different from previous work, in our model, factor discovery and representation learning are simultaneously conducted, and we are able to handle extra attribute information and knowledge. In this way, the proposed model can learn interpretable and meaningful representations for users and items. Unlike traditional methods that need to make a trade-off between explainability and effectiveness, the performance of our proposed explainable model is not negatively affected after considering explainability. Finally, comprehensive experiments are conducted to validate the performance of our model as well as explanation faithfulness.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司