亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Denoising diffusions are a powerful method to generate approximate samples from high-dimensional data distributions. Recent results provide polynomial bounds on their convergence rate, assuming $L^2$-accurate scores. Until now, the tightest bounds were either superlinear in the data dimension or required strong smoothness assumptions. We provide the first convergence bounds which are linear in the data dimension (up to logarithmic factors) assuming only finite second moments of the data distribution. We show that diffusion models require at most $\tilde O(\frac{d \log^2(1/\delta)}{\varepsilon^2})$ steps to approximate an arbitrary distribution on $\mathbb{R}^d$ corrupted with Gaussian noise of variance $\delta$ to within $\varepsilon^2$ in KL divergence. Our proof extends the Girsanov-based methods of previous works. We introduce a refined treatment of the error from discretizing the reverse SDE inspired by stochastic localization.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 分類數據 · MoDELS · 潛變量/隱變量 · 話題模型 ·
2024 年 2 月 29 日

Latent variable models are increasingly used in economics for high-dimensional categorical data like text and surveys. We demonstrate the effectiveness of Hamiltonian Monte Carlo (HMC) with parallelized automatic differentiation for analyzing such data in a computationally efficient and methodologically sound manner. Our new model, Supervised Topic Model with Covariates, shows that carefully modeling this type of data can have significant implications on conclusions compared to a simpler, frequently used, yet methodologically problematic, two-step approach. A simulation study and revisiting Bandiera et al. (2020)'s study of executive time use demonstrate these results. The approach accommodates thousands of parameters and doesn't require custom algorithms specific to each model, making it accessible for applied researchers

Direct alignment from preferences (DAP) methods, such as DPO, have recently emerged as efficient alternatives to reinforcement learning from human feedback (RLHF), that do not require a separate reward model. However, the preference datasets used in DAP methods are usually collected ahead of training and never updated, thus the feedback is purely offline. Moreover, responses in these datasets are often sampled from a language model distinct from the one being aligned, and since the model evolves over training, the alignment phase is inevitably off-policy. In this study, we posit that online feedback is key and improves DAP methods. Our method, online AI feedback (OAIF), uses an LLM as annotator: on each training iteration, we sample two responses from the current model and prompt the LLM annotator to choose which one is preferred, thus providing online feedback. Despite its simplicity, we demonstrate via human evaluation in several tasks that OAIF outperforms both offline DAP and RLHF methods. We further show that the feedback leveraged in OAIF is easily controllable, via instruction prompts to the LLM annotator.

Multimodal datasets contain observations generated by multiple types of sensors. Most works to date focus on uncovering latent structures in the data that appear in all modalities. However, important aspects of the data may appear in only one modality due to the differences between the sensors. Uncovering modality-specific attributes may provide insights into the sources of the variability of the data. For example, certain clusters may appear in the analysis of genetics but not in epigenetic markers. Another example is hyper-spectral satellite imaging, where various atmospheric and ground phenomena are detectable using different parts of the spectrum. In this paper, we address the problem of uncovering latent structures that are unique to a single modality. Our approach is based on computing a graph representation of datasets from two modalities and analyzing the differences between their connectivity patterns. We provide an asymptotic analysis of the convergence of our approach based on a product manifold model. To evaluate the performance of our method, we test its ability to uncover latent structures in multiple types of artificial and real datasets.

The properties of the generalized Waring distribution defined on the non negative integers are reviewed. Formulas for its moments and its mode are given. A construction as a mixture of negative binomial distributions is also presented. Then we turn to the Petersen model for estimating the population size $N$ in a two-way capture recapture experiment. We construct a Bayesian model for $N$ by combining a Waring prior with the hypergeometric distribution for the number of units caught twice in the experiment. Credible intervals for $N$ are obtained using quantiles of the posterior, a generalized Waring distribution. The standard confidence interval for the population size constructed using the asymptotic variance of Petersen estimator and .5 logit transformed interval are shown to be special cases of the generalized Waring credible interval. The true coverage of this interval is shown to be bigger than or equal to its nominal converage in small populations, regardless of the capture probabilities. In addition, its length is substantially smaller than that of the .5 logit transformed interval. Thus the proposed generalized Waring credible interval appears to be the best way to quantify the uncertainty of the Petersen estimator for populations size.

Large language models (LLMs) have demonstrated impressive performance on many tasks. However, to achieve optimal performance, specially designed prompting methods are still needed. These methods either rely on task-specific few-shot examples that require a certain level of domain knowledge, or are designed to be simple but only perform well on a few types of tasks. In this work, we attempt to introduce the concept of generalist prompting, which operates on the design principle of achieving optimal or near-optimal performance on a wide range of tasks while eliminating the need for manual selection and customization of prompts tailored to specific problems. Furthermore, we propose MeMo (Mental Models), an innovative prompting method that is simple-designed yet effectively fulfills the criteria of generalist prompting. MeMo distills the cores of various prompting methods into individual mental models and allows LLMs to autonomously select the most suitable mental models for the problem, achieving or being near to the state-of-the-art results on diverse tasks such as STEM, logical reasoning, and commonsense reasoning in zero-shot settings. We hope that the insights presented herein will stimulate further exploration of generalist prompting methods for LLMs.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司