亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There are two primary approaches to addressing cross-lingual transfer: multilingual pre-training, which implicitly aligns the hidden representations of various languages, and translate-test, which explicitly translates different languages into an intermediate language, such as English. Translate-test offers better interpretability compared to multilingual pre-training. However, it has lower performance than multilingual pre-training(Conneau and Lample, 2019; Conneau et al, 2020) and struggles with word-level tasks due to translation altering word order. As a result, we propose a new Machine-created Universal Language (MUL) as an alternative intermediate language. MUL comprises a set of discrete symbols forming a universal vocabulary and a natural language to MUL translator for converting multiple natural languages to MUL. MUL unifies shared concepts from various languages into a single universal word, enhancing cross-language transfer. Additionally, MUL retains language-specific words and word order, allowing the model to be easily applied to word-level tasks. Our experiments demonstrate that translating into MUL yields improved performance compared to multilingual pre-training, and our analysis indicates that MUL possesses strong interpretability. The code is at: //github.com/microsoft/Unicoder/tree/master/MCUL.

相關內容

Zero-shot cross-lingual transfer utilizing multilingual LLMs has become a popular learning paradigm for low-resource languages with no labeled training data. However, for NLP tasks that involve fine-grained predictions on words and phrases, the performance of zero-shot cross-lingual transfer learning lags far behind supervised fine-tuning methods. Therefore, it is common to exploit translation and label projection to further improve the performance by (1) translating training data that is available in a high-resource language (e.g., English) together with the gold labels into low-resource languages, and/or (2) translating test data in low-resource languages to a high-source language to run inference on, then projecting the predicted span-level labels back onto the original test data. However, state-of-the-art marker-based label projection methods suffer from translation quality degradation due to the extra label markers injected in the input to the translation model. In this work, we explore a new direction that leverages constrained decoding for label projection to overcome the aforementioned issues. Our new method not only can preserve the quality of translated texts but also has the versatility of being applicable to both translating training and translating test data strategies. This versatility is crucial as our experiments reveal that translating test data can lead to a considerable boost in performance compared to translating only training data. We evaluate on two cross-lingual transfer tasks, namely Named Entity Recognition and Event Argument Extraction, spanning 20 languages. The results demonstrate that our approach outperforms the state-of-the-art marker-based method by a large margin and also shows better performance than other label projection methods that rely on external word alignment.

Data reduction is a fundamental challenge of modern technology, where classical statistical methods are not applicable because of computational limitations. We consider linear regression for an extraordinarily large number of observations, but only a few covariates. Subsampling aims at the selection of a given percentage of the existing original data. Under distributional assumptions on the covariates, we derive D-optimal subsampling designs and study their theoretical properties. We make use of fundamental concepts of optimal design theory and an equivalence theorem from constrained convex optimization. The thus obtained subsampling designs provide simple rules for whether to accept or reject a data point, allowing for an easy algorithmic implementation. In addition, we propose a simplified subsampling method with lower computational complexity that differs from the D-optimal design. We present a simulation study, comparing both subsampling schemes with the IBOSS method in the case of a fixed size of the subsample.

The approach to giving a proof-theoretic semantics for IMLL taken by Gheorghiu, Gu and Pym is an interesting adaptation of the work presented by Sandqvist in his 2015 paper for IPL. What is particularly interesting is how naturally the move to the substructural setting provided a semantics for the multiplicative fragment of intuitionistic linear logic. Whilst ultimately the authors of the semantics for IMLL used their foundations to provide a semantics for bunched implication logic, it begs the question, what of the rest of intuitionistic linear logic? In this paper, I present a semantics for intuitionistic linear logic, by first presenting a semantics for the multiplicative and additive fragment after which we focus solely on considering the modality "of-course", thus giving a proof-theoretic semantics for intuitionistic linear logic.

Self-training has gained attraction because of its simplicity and versatility, yet it is vulnerable to noisy pseudo-labels caused by erroneous confidence. Several solutions have been proposed to handle the problem, but they require significant modifications in self-training algorithms or model architecture, and most have limited applicability in tabular domains. To address this issue, we explore a novel direction of reliable confidence in self-training contexts and conclude that the confidence, which represents the value of the pseudo-label, should be aware of the cluster assumption. In this regard, we propose Cluster-Aware Self-Training (CAST) for tabular data, which enhances existing self-training algorithms at a negligible cost without significant modifications. Concretely, CAST regularizes the confidence of the classifier by leveraging local density for each class in the labeled training data, forcing the pseudo-labels in low-density regions to have lower confidence. Extensive empirical evaluations on up to 21 real-world datasets confirm not only the superior performance of CAST but also its robustness in various setups in self-training contexts.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

Graph Convolutional Network (GCN) has been widely applied in transportation demand prediction due to its excellent ability to capture non-Euclidean spatial dependence among station-level or regional transportation demands. However, in most of the existing research, the graph convolution was implemented on a heuristically generated adjacency matrix, which could neither reflect the real spatial relationships of stations accurately, nor capture the multi-level spatial dependence of demands adaptively. To cope with the above problems, this paper provides a novel graph convolutional network for transportation demand prediction. Firstly, a novel graph convolution architecture is proposed, which has different adjacency matrices in different layers and all the adjacency matrices are self-learned during the training process. Secondly, a layer-wise coupling mechanism is provided, which associates the upper-level adjacency matrix with the lower-level one. It also reduces the scale of parameters in our model. Lastly, a unitary network is constructed to give the final prediction result by integrating the hidden spatial states with gated recurrent unit, which could capture the multi-level spatial dependence and temporal dynamics simultaneously. Experiments have been conducted on two real-world datasets, NYC Citi Bike and NYC Taxi, and the results demonstrate the superiority of our model over the state-of-the-art ones.

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

For languages with no annotated resources, transferring knowledge from rich-resource languages is an effective solution for named entity recognition (NER). While all existing methods directly transfer from source-learned model to a target language, in this paper, we propose to fine-tune the learned model with a few similar examples given a test case, which could benefit the prediction by leveraging the structural and semantic information conveyed in such similar examples. To this end, we present a meta-learning algorithm to find a good model parameter initialization that could fast adapt to the given test case and propose to construct multiple pseudo-NER tasks for meta-training by computing sentence similarities. To further improve the model's generalization ability across different languages, we introduce a masking scheme and augment the loss function with an additional maximum term during meta-training. We conduct extensive experiments on cross-lingual named entity recognition with minimal resources over five target languages. The results show that our approach significantly outperforms existing state-of-the-art methods across the board.

Most deep learning-based models for speech enhancement have mainly focused on estimating the magnitude of spectrogram while reusing the phase from noisy speech for reconstruction. This is due to the difficulty of estimating the phase of clean speech. To improve speech enhancement performance, we tackle the phase estimation problem in three ways. First, we propose Deep Complex U-Net, an advanced U-Net structured model incorporating well-defined complex-valued building blocks to deal with complex-valued spectrograms. Second, we propose a polar coordinate-wise complex-valued masking method to reflect the distribution of complex ideal ratio masks. Third, we define a novel loss function, weighted source-to-distortion ratio (wSDR) loss, which is designed to directly correlate with a quantitative evaluation measure. Our model was evaluated on a mixture of the Voice Bank corpus and DEMAND database, which has been widely used by many deep learning models for speech enhancement. Ablation experiments were conducted on the mixed dataset showing that all three proposed approaches are empirically valid. Experimental results show that the proposed method achieves state-of-the-art performance in all metrics, outperforming previous approaches by a large margin.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

北京阿比特科技有限公司