亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Effectively leveraging multimodal data such as various images, laboratory tests and clinical information is gaining traction in a variety of AI-based medical diagnosis and prognosis tasks. Most existing multi-modal techniques only focus on enhancing their performance by leveraging the differences or shared features from various modalities and fusing feature across different modalities. These approaches are generally not optimal for clinical settings, which pose the additional challenges of limited training data, as well as being rife with redundant data or noisy modality channels, leading to subpar performance. To address this gap, we study the robustness of existing methods to data redundancy and noise and propose a generalized dynamic multimodal information bottleneck framework for attaining a robust fused feature representation. Specifically, our information bottleneck module serves to filter out the task-irrelevant information and noises in the fused feature, and we further introduce a sufficiency loss to prevent dropping of task-relevant information, thus explicitly preserving the sufficiency of prediction information in the distilled feature. We validate our model on an in-house and a public COVID19 dataset for mortality prediction as well as two public biomedical datasets for diagnostic tasks. Extensive experiments show that our method surpasses the state-of-the-art and is significantly more robust, being the only method to remain performance when large-scale noisy channels exist. Our code is publicly available at //github.com/BII-wushuang/DMIB.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 估計/估計量 · · 情景 · 可辨認的 ·
2023 年 12 月 21 日

Keyphrase extraction is a fundamental task in natural language processing and information retrieval that aims to extract a set of phrases with important information from a source document. Identifying important keyphrase is the central component of the keyphrase extraction task, and its main challenge is how to represent information comprehensively and discriminate importance accurately. In this paper, to address these issues, we design a new hyperbolic matching model (HyperMatch) to represent phrases and documents in the same hyperbolic space and explicitly estimate the phrase-document relevance via the Poincar\'e distance as the important score of each phrase. Specifically, to capture the hierarchical syntactic and semantic structure information, HyperMatch takes advantage of the hidden representations in multiple layers of RoBERTa and integrates them as the word embeddings via an adaptive mixing layer. Meanwhile, considering the hierarchical structure hidden in the document, HyperMatch embeds both phrases and documents in the same hyperbolic space via a hyperbolic phrase encoder and a hyperbolic document encoder. This strategy can further enhance the estimation of phrase-document relevance due to the good properties of hyperbolic space. In this setting, the keyphrase extraction can be taken as a matching problem and effectively implemented by minimizing a hyperbolic margin-based triplet loss. Extensive experiments are conducted on six benchmarks and demonstrate that HyperMatch outperforms the state-of-the-art baselines.

Quantum neural networks are expected to be a promising application in near-term quantum computation, but face challenges such as vanishing gradients during optimization and limited expressibility by a limited number of qubits and shallow circuits. To mitigate these challenges, distributed quantum neural networks have been proposed to make a prediction by approximating a large circuit with multiple small circuits. However, the approximation of a large circuit requires an exponential number of small circuit evaluations. Here, we instead propose to distribute partitioned features over multiple small quantum neural networks and use the ensemble of their expectation values to generate predictions. To verify our distributed approach, we demonstrate multi-class classifications of handwritten digit datasets. Especially for the MNIST dataset, we succeeded in ten class classifications of the dataset with exceeding 96% accuracy. Our proposed method not only achieved highly accurate predictions for a large dataset but also reduced the hardware requirements for each quantum neural network compared to a single quantum neural network. Our results highlight distributed quantum neural networks as a promising direction for practical quantum machine learning algorithms compatible with near-term quantum devices. We hope that our approach is useful for exploring quantum machine learning applications.

Computerised clinical coding approaches aim to automate the process of assigning a set of codes to medical records. While there is active research pushing the state of the art on clinical coding for hospitalized patients, the outpatient setting -- where doctors tend to non-hospitalised patients -- is overlooked. Although both settings can be formalised as a multi-label classification task, they present unique and distinct challenges, which raises the question of whether the success of inpatient clinical coding approaches translates to the outpatient setting. This paper is the first to investigate how well state-of-the-art deep learning-based clinical coding approaches work in the outpatient setting at hospital scale. To this end, we collect a large outpatient dataset comprising over 7 million notes documenting over half a million patients. We adapt four state-of-the-art clinical coding approaches to this setting and evaluate their potential to assist coders. We find evidence that clinical coding in outpatient settings can benefit from more innovations in popular inpatient coding benchmarks. A deeper analysis of the factors contributing to the success -- amount and form of data and choice of document representation -- reveals the presence of easy-to-solve examples, the coding of which can be completely automated with a low error rate.

With the rapid advancement of technology, the recognition of underwater acoustic signals in complex environments has become increasingly crucial. Currently, mainstream underwater acoustic signal recognition relies primarily on time-frequency analysis to extract spectral features, finding widespread applications in the field. However, existing recognition methods heavily depend on expert systems, facing limitations such as restricted knowledge bases and challenges in handling complex relationships. These limitations stem from the complexity and maintenance difficulties associated with rules or inference engines. Recognizing the potential advantages of deep learning in handling intricate relationships, this paper proposes a method utilizing neural networks for underwater acoustic signal recognition. The proposed approach involves continual learning of features extracted from spectra for the classification of underwater acoustic signals. Deep learning models can automatically learn abstract features from data and continually adjust weights during training to enhance classification performance.

Recently, the performance of neural image compression (NIC) has steadily improved thanks to the last line of study, reaching or outperforming state-of-the-art conventional codecs. Despite significant progress, current NIC methods still rely on ConvNet-based entropy coding, limited in modeling long-range dependencies due to their local connectivity and the increasing number of architectural biases and priors, resulting in complex underperforming models with high decoding latency. Motivated by the efficiency investigation of the Tranformer-based transform coding framework, namely SwinT-ChARM, we propose to enhance the latter, as first, with a more straightforward yet effective Tranformer-based channel-wise auto-regressive prior model, resulting in an absolute image compression transformer (ICT). Through the proposed ICT, we can capture both global and local contexts from the latent representations and better parameterize the distribution of the quantized latents. Further, we leverage a learnable scaling module with a sandwich ConvNeXt-based pre-/post-processor to accurately extract more compact latent codes while reconstructing higher-quality images. Extensive experimental results on benchmark datasets showed that the proposed framework significantly improves the trade-off between coding efficiency and decoder complexity over the versatile video coding (VVC) reference encoder (VTM-18.0) and the neural codec SwinT-ChARM. Moreover, we provide model scaling studies to verify the computational efficiency of our approach and conduct several objective and subjective analyses to bring to the fore the performance gap between the adaptive image compression transformer (AICT) and the neural codec SwinT-ChARM.

Despite the rapid expansion of types of large language models, there remains a notable gap in models specifically designed for the Dutch language. This gap is not only a shortage in terms of pretrained Dutch models but also in terms of data, and benchmarks and leaderboards. This work provides a small step to improve the situation. First, we introduce two fine-tuned variants of the Llama 2 13B model. We first fine-tuned Llama 2 using Dutch-specific web-crawled data and subsequently refined this model further on multiple synthetic instruction and chat datasets. These datasets as well as the model weights are made available. In addition, we provide a leaderboard to keep track of the performance of (Dutch) models on a number of generation tasks, and we include results of a number of state-of-the-art models, including our own. Finally we provide a critical conclusion on what we believe is needed to push forward Dutch language models and the whole eco-system around the models.

Problems in causal inference can be fruitfully addressed using signal processing techniques. As an example, it is crucial to successfully quantify the causal effects of an intervention to determine whether the intervention achieved desired outcomes. We present a new geometric signal processing approach to classical synthetic control called ellipsoidal optimal recovery (EOpR), for estimating the unobservable outcome of a treatment unit. EOpR provides policy evaluators with both worst-case and typical outcomes to help in decision making. It is an approximation-theoretic technique that relates to the theory of principal components, which recovers unknown observations given a learned signal class and a set of known observations. We show EOpR can improve pre-treatment fit and mitigate bias of the post-treatment estimate relative to other methods in causal inference. Beyond recovery of the unit of interest, an advantage of EOpR is that it produces worst-case limits over the estimates produced. We assess our approach on artificially-generated data, on datasets commonly used in the econometrics literature, and in the context of the COVID-19 pandemic, showing better performance than baseline techniques

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

北京阿比特科技有限公司