In this paper, we examine 3 important issues in the practical use of state-of-the-art facial landmark detectors and show how a combination of specific architectural modifications can directly improve their accuracy and temporal stability. First, many facial landmark detectors require face normalization as a preprocessing step, which is accomplished by a separately-trained neural network that crops and resizes the face in the input image. There is no guarantee that this pre-trained network performs the optimal face normalization for landmark detection. We instead analyze the use of a spatial transformer network that is trained alongside the landmark detector in an unsupervised manner, and jointly learn optimal face normalization and landmark detection. Second, we show that modifying the output head of the landmark predictor to infer landmarks in a canonical 3D space can further improve accuracy. To convert the predicted 3D landmarks into screen-space, we additionally predict the camera intrinsics and head pose from the input image. As a side benefit, this allows to predict the 3D face shape from a given image only using 2D landmarks as supervision, which is useful in determining landmark visibility among other things. Finally, when training a landmark detector on multiple datasets at the same time, annotation inconsistencies across datasets forces the network to produce a suboptimal average. We propose to add a semantic correction network to address this issue. This additional lightweight neural network is trained alongside the landmark detector, without requiring any additional supervision. While the insights of this paper can be applied to most common landmark detectors, we specifically target a recently-proposed continuous 2D landmark detector to demonstrate how each of our additions leads to meaningful improvements over the state-of-the-art on standard benchmarks.
In this paper, we consider the problem of prototype-based vision-language reasoning problem. We observe that existing methods encounter three major challenges: 1) escalating resource demands and prolonging training times, 2) contending with excessive learnable parameters, and 3) fine-tuning based only on a single modality. These challenges will hinder their capability to adapt Vision-Language Models (VLMs) to downstream tasks. Motivated by this critical observation, we propose a novel method called NODE-Adapter, which utilizes Neural Ordinary Differential Equations for better vision-language reasoning. To fully leverage both visual and textual modalities and estimate class prototypes more effectively and accurately, we divide our method into two stages: cross-modal prototype construction and cross-modal prototype optimization using neural ordinary differential equations. Specifically, we exploit VLM to encode hand-crafted prompts into textual features and few-shot support images into visual features. Then, we estimate the textual prototype and visual prototype by averaging the textual features and visual features, respectively, and adaptively combine the textual prototype and visual prototype to construct the cross-modal prototype. To alleviate the prototype bias, we then model the prototype optimization process as an initial value problem with Neural ODEs to estimate the continuous gradient flow. Our extensive experimental results, which cover few-shot classification, domain generalization, and visual reasoning on human-object interaction, demonstrate that the proposed method significantly outperforms existing state-of-the-art approaches.
In the realm of motion generation, the creation of long-duration, high-quality motion sequences remains a significant challenge. This paper presents our groundbreaking work on "Infinite Motion", a novel approach that leverages long text to extended motion generation, effectively bridging the gap between short and long-duration motion synthesis. Our core insight is the strategic extension and reassembly of existing high-quality text-motion datasets, which has led to the creation of a novel benchmark dataset to facilitate the training of models for extended motion sequences. A key innovation of our model is its ability to accept arbitrary lengths of text as input, enabling the generation of motion sequences tailored to specific narratives or scenarios. Furthermore, we incorporate the timestamp design for text which allows precise editing of local segments within the generated sequences, offering unparalleled control and flexibility in motion synthesis. We further demonstrate the versatility and practical utility of "Infinite Motion" through three specific applications: natural language interactive editing, motion sequence editing within long sequences and splicing of independent motion sequences. Each application highlights the adaptability of our approach and broadens the spectrum of possibilities for research and development in motion generation. Through extensive experiments, we demonstrate the superior performance of our model in generating long sequence motions compared to existing methods.Project page: //shuochengzhai.github.io/Infinite-motion.github.io/
In this paper, we propose the Hierarchical Document Transformer (HDT), a novel sparse Transformer architecture tailored for structured hierarchical documents. Such documents are extremely important in numerous domains, including science, law or medicine. However, most existing solutions are inefficient and fail to make use of the structure inherent to documents. HDT exploits document structure by introducing auxiliary anchor tokens and redesigning the attention mechanism into a sparse multi-level hierarchy. This approach facilitates information exchange between tokens at different levels while maintaining sparsity, thereby enhancing computational and memory efficiency while exploiting the document structure as an inductive bias. We address the technical challenge of implementing HDT's sample-dependent hierarchical attention pattern by developing a novel sparse attention kernel that considers the hierarchical structure of documents. As demonstrated by our experiments, utilizing structural information present in documents leads to faster convergence, higher sample efficiency and better performance on downstream tasks.
In this paper, we investigate the potential of image-to-image translation (I2I) techniques for transferring realism to 3D-rendered facial images in the context of Face Recognition (FR) systems. The primary motivation for using 3D-rendered facial images lies in their ability to circumvent the challenges associated with collecting large real face datasets for training FR systems. These images are generated entirely by 3D rendering engines, facilitating the generation of synthetic identities. However, it has been observed that FR systems trained on such synthetic datasets underperform when compared to those trained on real datasets, on various FR benchmarks. In this work, we demonstrate that by transferring the realism to 3D-rendered images (i.e., making the 3D-rendered images look more real), we can boost the performance of FR systems trained on these more photorealistic images. This improvement is evident when these systems are evaluated against FR benchmarks utilizing real-world data, thereby paving new pathways for employing synthetic data in real-world applications.
In this paper, we address a recent trend in robotic home appliances to include vision systems on personal devices, capable of personalizing the appliances on the fly. In particular, we formulate and address an important technical task of personal object search, which involves localization and identification of personal items of interest on images captured by robotic appliances, with each item referenced only by a few annotated images. The task is crucial for robotic home appliances and mobile systems, which need to process personal visual scenes or to operate with particular personal objects (e.g., for grasping or navigation). In practice, personal object search presents two main technical challenges. First, a robot vision system needs to be able to distinguish between many fine-grained classes, in the presence of occlusions and clutter. Second, the strict resource requirements for the on-device system restrict the usage of most state-of-the-art methods for few-shot learning and often prevent on-device adaptation. In this work, we propose Swiss DINO: a simple yet effective framework for one-shot personal object search based on the recent DINOv2 transformer model, which was shown to have strong zero-shot generalization properties. Swiss DINO handles challenging on-device personalized scene understanding requirements and does not require any adaptation training. We show significant improvement (up to 55%) in segmentation and recognition accuracy compared to the common lightweight solutions, and significant footprint reduction of backbone inference time (up to 100x) and GPU consumption (up to 10x) compared to the heavy transformer-based solutions.
Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely INDICATOR, MESSAGE and AGGREGATE functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet is very general, covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
In this paper, we present a comprehensive review of the imbalance problems in object detection. To analyze the problems in a systematic manner, we introduce a problem-based taxonomy. Following this taxonomy, we discuss each problem in depth and present a unifying yet critical perspective on the solutions in the literature. In addition, we identify major open issues regarding the existing imbalance problems as well as imbalance problems that have not been discussed before. Moreover, in order to keep our review up to date, we provide an accompanying webpage which catalogs papers addressing imbalance problems, according to our problem-based taxonomy. Researchers can track newer studies on this webpage available at: //github.com/kemaloksuz/ObjectDetectionImbalance .
We consider an interesting problem-salient instance segmentation in this paper. Other than producing bounding boxes, our network also outputs high-quality instance-level segments. Taking into account the category-independent property of each target, we design a single stage salient instance segmentation framework, with a novel segmentation branch. Our new branch regards not only local context inside each detection window but also its surrounding context, enabling us to distinguish the instances in the same scope even with obstruction. Our network is end-to-end trainable and runs at a fast speed (40 fps when processing an image with resolution 320x320). We evaluate our approach on a publicly available benchmark and show that it outperforms other alternative solutions. We also provide a thorough analysis of the design choices to help readers better understand the functions of each part of our network. The source code can be found at \url{//github.com/RuochenFan/S4Net}.
In this paper we address issues with image retrieval benchmarking on standard and popular Oxford 5k and Paris 6k datasets. In particular, annotation errors, the size of the dataset, and the level of challenge are addressed: new annotation for both datasets is created with an extra attention to the reliability of the ground truth. Three new protocols of varying difficulty are introduced. The protocols allow fair comparison between different methods, including those using a dataset pre-processing stage. For each dataset, 15 new challenging queries are introduced. Finally, a new set of 1M hard, semi-automatically cleaned distractors is selected. An extensive comparison of the state-of-the-art methods is performed on the new benchmark. Different types of methods are evaluated, ranging from local-feature-based to modern CNN based methods. The best results are achieved by taking the best of the two worlds. Most importantly, image retrieval appears far from being solved.