亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of kernel classification. Works on kernel regression have shown that the rate of decay of the prediction error with the number of samples for a large class of data-sets is well characterized by two quantities: the capacity and source of the data-set. In this work, we compute the decay rates for the misclassification (prediction) error under the Gaussian design, for data-sets satisfying source and capacity assumptions. We derive the rates as a function of the source and capacity coefficients for two standard kernel classification settings, namely margin-maximizing Support Vector Machines (SVM) and ridge classification, and contrast the two methods. As a consequence, we find that the known worst-case rates are loose for this class of data-sets. Finally, we show that the rates presented in this work are also observed on real data-sets.

相關內容

We establish optimal convergence rates up to a log-factor for a class of deep neural networks in a classification setting under a restraint sometimes referred to as the Tsybakov noise condition. We construct classifiers in a general setting where the boundary of the bayes-rule can be approximated well by neural networks. Corresponding rates of convergence are proven with respect to the misclassification error. It is then shown that these rates are optimal in the minimax sense if the boundary satisfies a smoothness condition. Non-optimal convergence rates already exist for this setting. Our main contribution lies in improving existing rates and showing optimality, which was an open problem. Furthermore, we show almost optimal rates under some additional restraints which circumvent the curse of dimensionality. For our analysis we require a condition which gives new insight on the restraint used. In a sense it acts as a requirement for the "correct noise exponent" for a class of functions.

We consider stochastic gradient descent and its averaging variant for binary classification problems in a reproducing kernel Hilbert space. In the traditional analysis using a consistency property of loss functions, it is known that the expected classification error converges more slowly than the expected risk even when assuming a low-noise condition on the conditional label probabilities. Consequently, the resulting rate is sublinear. Therefore, it is important to consider whether much faster convergence of the expected classification error can be achieved. In recent research, an exponential convergence rate for stochastic gradient descent was shown under a strong low-noise condition but provided theoretical analysis was limited to the squared loss function, which is somewhat inadequate for binary classification tasks. In this paper, we show an exponential convergence of the expected classification error in the final phase of the stochastic gradient descent for a wide class of differentiable convex loss functions under similar assumptions. As for the averaged stochastic gradient descent, we show that the same convergence rate holds from the early phase of training. In experiments, we verify our analyses on the $L_2$-regularized logistic regression.

Many internet platforms that collect behavioral big data use it to predict user behavior for internal purposes and for their business customers (e.g., advertisers, insurers, security forces, governments, political consulting firms) who utilize the predictions for personalization, targeting, and other decision-making. Improving predictive accuracy is therefore extremely valuable. Data science researchers design algorithms, models, and approaches to improve prediction. Prediction is also improved with larger and richer data. Beyond improving algorithms and data, platforms can stealthily achieve better prediction accuracy by pushing users' behaviors towards their predicted values, using behavior modification techniques, thereby demonstrating more certain predictions. Such apparent "improved" prediction can result from employing reinforcement learning algorithms that combine prediction and behavior modification. This strategy is absent from the machine learning and statistics literature. Investigating its properties requires integrating causal with predictive notation. To this end, we incorporate Pearl's causal do(.) operator into the predictive vocabulary. We then decompose the expected prediction error given behavior modification, and identify the components impacting predictive power. Our derivation elucidates implications of such behavior modification to data scientists, platforms, their customers, and the humans whose behavior is manipulated. Behavior modification can make users' behavior more predictable and even more homogeneous; yet this apparent predictability might not generalize when business customers use predictions in practice. Outcomes pushed towards their predictions can be at odds with customers' intentions, and harmful to manipulated users.

Given a partial differential equation (PDE), goal-oriented error estimation allows us to understand how errors in a diagnostic quantity of interest (QoI), or goal, occur and accumulate in a numerical approximation, for example using the finite element method. By decomposing the error estimates into contributions from individual elements, it is possible to formulate adaptation methods, which modify the mesh with the objective of minimising the resulting QoI error. However, the standard error estimate formulation involves the true adjoint solution, which is unknown in practice. As such, it is common practice to approximate it with an 'enriched' approximation (e.g. in a higher order space or on a refined mesh). Doing so generally results in a significant increase in computational cost, which can be a bottleneck compromising the competitiveness of (goal-oriented) adaptive simulations. The central idea of this paper is to develop a "data-driven" goal-oriented mesh adaptation approach through the selective replacement of the expensive error estimation step with an appropriately configured and trained neural network. In doing so, the error estimator may be obtained without even constructing the enriched spaces. An element-by-element construction is employed here, whereby local values of various parameters related to the mesh geometry and underlying problem physics are taken as inputs, and the corresponding contribution to the error estimator is taken as output. We demonstrate that this approach is able to obtain the same accuracy with a reduced computational cost, for adaptive mesh test cases related to flow around tidal turbines, which interact via their downstream wakes, and where the overall power output of the farm is taken as the QoI. Moreover, we demonstrate that the element-by-element approach implies reasonably low training costs.

In this work we introduce KERNELIZED TRANSFORMER, a generic, scalable, data driven framework for learning the kernel function in Transformers. Our framework approximates the Transformer kernel as a dot product between spectral feature maps and learns the kernel by learning the spectral distribution. This not only helps in learning a generic kernel end-to-end, but also reduces the time and space complexity of Transformers from quadratic to linear. We show that KERNELIZED TRANSFORMERS achieve performance comparable to existing efficient Transformer architectures, both in terms of accuracy as well as computational efficiency. Our study also demonstrates that the choice of the kernel has a substantial impact on performance, and kernel learning variants are competitive alternatives to fixed kernel Transformers, both in long as well as short sequence tasks.

Optimizing noisy functions online, when evaluating the objective requires experiments on a deployed system, is a crucial task arising in manufacturing, robotics and many others. Often, constraints on safe inputs are unknown ahead of time, and we only obtain noisy information, indicating how close we are to violating the constraints. Yet, safety must be guaranteed at all times, not only for the final output of the algorithm. We introduce a general approach for seeking a stationary point in high dimensional non-linear stochastic optimization problems in which maintaining safety during learning is crucial. Our approach called LB-SGD is based on applying stochastic gradient descent (SGD) with a carefully chosen adaptive step size to a logarithmic barrier approximation of the original problem. We provide a complete convergence analysis of non-convex, convex, and strongly-convex smooth constrained problems, with first-order and zeroth-order feedback. Our approach yields efficient updates and scales better with dimensionality compared to existing approaches. We empirically compare the sample complexity and the computational cost of our method with existing safe learning approaches. Beyond synthetic benchmarks, we demonstrate the effectiveness of our approach on minimizing constraint violation in policy search tasks in safe reinforcement learning (RL).

Spatial Gaussian process regression models typically contain finite dimensional covariance parameters that need to be estimated from the data. We study the Bayesian estimation of covariance parameters including the nugget parameter in a general class of stationary covariance functions under fixed-domain asymptotics, which is theoretically challenging due to the increasingly strong dependence among spatial observations. We propose a novel adaptation of the Schwartz's consistency theorem for showing posterior contraction rates of the covariance parameters including the nugget. We derive a new polynomial evidence lower bound, and propose new consistent higher-order quadratic variation estimators that satisfy concentration inequalities with exponentially small tails. Our Bayesian fixed-domain asymptotics theory leads to explicit posterior contraction rates for the microergodic and nugget parameters in the isotropic Matern covariance function under a general stratified sampling design. We verify our theory and the Bayesian predictive performance in simulation studies and an application to sea surface temperature data.

Gaussian processes have become a promising tool for various safety-critical settings, since the posterior variance can be used to directly estimate the model error and quantify risk. However, state-of-the-art techniques for safety-critical settings hinge on the assumption that the kernel hyperparameters are known, which does not apply in general. To mitigate this, we introduce robust Gaussian process uniform error bounds in settings with unknown hyperparameters. Our approach computes a confidence region in the space of hyperparameters, which enables us to obtain a probabilistic upper bound for the model error of a Gaussian process with arbitrary hyperparameters. We do not require to know any bounds for the hyperparameters a priori, which is an assumption commonly found in related work. Instead, we are able to derive bounds from data in an intuitive fashion. We additionally employ the proposed technique to derive performance guarantees for a class of learning-based control problems. Experiments show that the bound performs significantly better than vanilla and fully Bayesian Gaussian processes.

Neural networks have shown tremendous growth in recent years to solve numerous problems. Various types of neural networks have been introduced to deal with different types of problems. However, the main goal of any neural network is to transform the non-linearly separable input data into more linearly separable abstract features using a hierarchy of layers. These layers are combinations of linear and nonlinear functions. The most popular and common non-linearity layers are activation functions (AFs), such as Logistic Sigmoid, Tanh, ReLU, ELU, Swish and Mish. In this paper, a comprehensive overview and survey is presented for AFs in neural networks for deep learning. Different classes of AFs such as Logistic Sigmoid and Tanh based, ReLU based, ELU based, and Learning based are covered. Several characteristics of AFs such as output range, monotonicity, and smoothness are also pointed out. A performance comparison is also performed among 18 state-of-the-art AFs with different networks on different types of data. The insights of AFs are presented to benefit the researchers for doing further research and practitioners to select among different choices. The code used for experimental comparison is released at: \url{//github.com/shivram1987/ActivationFunctions}.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

北京阿比特科技有限公司