Tomographic imaging is in general an ill-posed inverse problem. Typically, a single regularized image estimate of the sought-after object is obtained from tomographic measurements. However, there may be multiple objects that are all consistent with the same measurement data. The ability to generate such alternate solutions is important because it may enable new assessments of imaging systems. In principle, this can be achieved by means of posterior sampling methods. In recent years, deep neural networks have been employed for posterior sampling with promising results. However, such methods are not yet for use with large-scale tomographic imaging applications. On the other hand, empirical sampling methods may be computationally feasible for large-scale imaging systems and enable uncertainty quantification for practical applications. Empirical sampling involves solving a regularized inverse problem within a stochastic optimization framework in order to obtain alternate data-consistent solutions. In this work, we propose a new empirical sampling method that computes multiple solutions of a tomographic inverse problem that are consistent with the same acquired measurement data. The method operates by repeatedly solving an optimization problem in the latent space of a style-based generative adversarial network (StyleGAN), and was inspired by the Photo Upsampling via Latent Space Exploration (PULSE) method that was developed for super-resolution tasks. The proposed method is demonstrated and analyzed via numerical studies that involve two stylized tomographic imaging modalities. These studies establish the ability of the method to perform efficient empirical sampling and uncertainty quantification.
Modern code review is a critical and indispensable practice in a pull-request development paradigm that prevails in Open Source Software (OSS) development. Finding a suitable reviewer in projects with massive participants thus becomes an increasingly challenging task. Many reviewer recommendation approaches (recommenders) have been developed to support this task which apply a similar strategy, i.e. modeling the review history first then followed by predicting/recommending a reviewer based on the model. Apparently, the better the model reflects the reality in review history, the higher recommender's performance we may expect. However, one typical scenario in a pull-request development paradigm, i.e. one Pull-Request (PR) (such as a revision or addition submitted by a contributor) may have multiple reviewers and they may impact each other through publicly posted comments, has not been modeled well in existing recommenders. We adopted the hypergraph technique to model this high-order relationship (i.e. one PR with multiple reviewers herein) and developed a new recommender, namely HGRec, which is evaluated by 12 OSS projects with more than 87K PRs, 680K comments in terms of accuracy and recommendation distribution. The results indicate that HGRec outperforms the state-of-the-art recommenders on recommendation accuracy. Besides, among the top three accurate recommenders, HGRec is more likely to recommend a diversity of reviewers, which can help to relieve the core reviewers' workload congestion issue. Moreover, since HGRec is based on hypergraph, which is a natural and interpretable representation to model review history, it is easy to accommodate more types of entities and realistic relationships in modern code review scenarios. As the first attempt, this study reveals the potentials of hypergraph on advancing the pragmatic solutions for code reviewer recommendation.
Recently, model-based agents have achieved better performance compared with model-free ones using the same computational budget and training time in single-agent environments. However, due to the complexity of multi-agent systems, it is very difficult to learn the model of the environment. When model-based methods are applied to multi-agent tasks, the significant compounding error may hinder the learning process. In this paper, we propose an implicit model-based multi-agent reinforcement learning method based on value decomposition methods. Under this method, agents can interact with the learned virtual environment and evaluate the current state value according to imagined future states, which makes agents have foresight. Our method can be applied to any multi-agent value decomposition method. The experimental results show that our method improves the sample efficiency in partially observable Markov decision process domains.
Guitar tablature transcription is an important but understudied problem within the field of music information retrieval. Traditional signal processing approaches offer only limited performance on the task, and there is little acoustic data with transcription labels for training machine learning models. However, guitar transcription labels alone are more widely available in the form of tablature, which is commonly shared among guitarists online. In this work, a collection of symbolic tablature is leveraged to estimate the pairwise likelihood of notes on the guitar. The output layer of a baseline tablature transcription model is reformulated, such that an inhibition loss can be incorporated to discourage the co-activation of unlikely note pairs. This naturally enforces playability constraints for guitar, and yields tablature which is more consistent with the symbolic data used to estimate pairwise likelihoods. With this methodology, we show that symbolic tablature can be used to shape the distribution of a tablature transcription model's predictions, even when little acoustic data is available.
In this paper, we investigate the problem of Semantic Segmentation for agricultural aerial imagery. We observe that the existing methods used for this task are designed without considering two characteristics of the aerial data: (i) the top-down perspective implies that the model cannot rely on a fixed semantic structure of the scene, because the same scene may be experienced with different rotations of the sensor; (ii) there can be a strong imbalance in the distribution of semantic classes because the relevant objects of the scene may appear at extremely different scales (e.g., a field of crops and a small vehicle). We propose a solution to these problems based on two ideas: (i) we use together a set of suitable augmentation and a consistency loss to guide the model to learn semantic representations that are invariant to the photometric and geometric shifts typical of the top-down perspective (Augmentation Invariance); (ii) we use a sampling method (Adaptive Sampling) that selects the training images based on a measure of pixel-wise distribution of classes and actual network confidence. With an extensive set of experiments conducted on the Agriculture-Vision dataset, we demonstrate that our proposed strategies improve the performance of the current state-of-the-art method.
We introduce Universal Solution Manifold Network (USM-Net), a novel surrogate model, based on Artificial Neural Networks (ANNs), which applies to differential problems whose solution depends on physical and geometrical parameters. Our method employs a mesh-less architecture, thus overcoming the limitations associated with image segmentation and mesh generation required by traditional discretization methods. Indeed, we encode geometrical variability through scalar landmarks, such as coordinates of points of interest. In biomedical applications, these landmarks can be inexpensively processed from clinical images. Our approach is non-intrusive and modular, as we select a data-driven loss function. The latter can also be modified by considering additional constraints, thus leveraging available physical knowledge. Our approach can also accommodate a universal coordinate system, which supports the USM-Net in learning the correspondence between points belonging to different geometries, boosting prediction accuracy on unobserved geometries. Finally, we present two numerical test cases in computational fluid dynamics involving variable Reynolds numbers as well as computational domains of variable shape. The results show that our method allows for inexpensive but accurate approximations of velocity and pressure, avoiding computationally expensive image segmentation, mesh generation, or re-training for every new instance of physical parameters and shape of the domain.
One of the most important problems in system identification and statistics is how to estimate the unknown parameters of a given model. Optimization methods and specialized procedures, such as Empirical Minimization (EM) can be used in case the likelihood function can be computed. For situations where one can only simulate from a parametric model, but the likelihood is difficult or impossible to evaluate, a technique known as the Two-Stage (TS) Approach can be applied to obtain reliable parametric estimates. Unfortunately, there is currently a lack of theoretical justification for TS. In this paper, we propose a statistical decision-theoretical derivation of TS, which leads to Bayesian and Minimax estimators. We also show how to apply the TS approach on models for independent and identically distributed samples, by computing quantiles of the data as a first step, and using a linear function as the second stage. The proposed method is illustrated via numerical simulations.
We present a novel static analysis technique to derive higher moments for program variables for a large class of probabilistic loops with potentially uncountable state spaces. Our approach is fully automatic, meaning it does not rely on externally provided invariants or templates. We employ algebraic techniques based on linear recurrences and introduce program transformations to simplify probabilistic programs while preserving their statistical properties. We develop power reduction techniques to further simplify the polynomial arithmetic of probabilistic programs and define the theory of moment-computable probabilistic loops for which higher moments can precisely be computed. Our work has applications towards recovering probability distributions of random variables and computing tail probabilities. The empirical evaluation of our results demonstrates the applicability of our work on many challenging examples.
Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.
When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.