亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Micro-expressions (MEs) are involuntary movements revealing people's hidden feelings, which has attracted numerous interests for its objectivity in emotion detection. However, despite its wide applications in various scenarios, micro-expression recognition (MER) remains a challenging problem in real life due to three reasons, including (i) data-level: lack of data and imbalanced classes, (ii) feature-level: subtle, rapid changing, and complex features of MEs, and (iii) decision-making-level: impact of individual differences. To address these issues, we propose a dual-branch meta-auxiliary learning method, called LightmanNet, for fast and robust micro-expression recognition. Specifically, LightmanNet learns general MER knowledge from limited data through a dual-branch bi-level optimization process: (i) In the first level, it obtains task-specific MER knowledge by learning in two branches, where the first branch is for learning MER features via primary MER tasks, while the other branch is for guiding the model obtain discriminative features via auxiliary tasks, i.e., image alignment between micro-expressions and macro-expressions since their resemblance in both spatial and temporal behavioral patterns. The two branches of learning jointly constrain the model of learning meaningful task-specific MER knowledge while avoiding learning noise or superficial connections between MEs and emotions that may damage its generalization ability. (ii) In the second level, LightmanNet further refines the learned task-specific knowledge, improving model generalization and efficiency. Extensive experiments on various benchmark datasets demonstrate the superior robustness and efficiency of LightmanNet.

相關內容

The effectiveness of Intrusion Detection Systems (IDS) is critical in an era where cyber threats are becoming increasingly complex. Machine learning (ML) and deep learning (DL) models provide an efficient and accurate solution for identifying attacks and anomalies in computer networks. However, using ML and DL models in IDS has led to a trust deficit due to their non-transparent decision-making. This transparency gap in IDS research is significant, affecting confidence and accountability. To address, this paper introduces a novel Explainable IDS approach, called X-CBA, that leverages the structural advantages of Graph Neural Networks (GNNs) to effectively process network traffic data, while also adapting a new Explainable AI (XAI) methodology. Unlike most GNN-based IDS that depend on labeled network traffic and node features, thereby overlooking critical packet-level information, our approach leverages a broader range of traffic data through network flows, including edge attributes, to improve detection capabilities and adapt to novel threats. Through empirical testing, we establish that our approach not only achieves high accuracy with 99.47% in threat detection but also advances the field by providing clear, actionable explanations of its analytical outcomes. This research also aims to bridge the current gap and facilitate the broader integration of ML/DL technologies in cybersecurity defenses by offering a local and global explainability solution that is both precise and interpretable.

Present Brain-Computer Interfacing (BCI) technology allows inference and detection of cognitive and affective states, but fairly little has been done to study scenarios in which such information can facilitate new applications that rely on modeling human cognition. One state that can be quantified from various physiological signals is attention. Estimates of human attention can be used to reveal preferences and novel dimensions of user experience. Previous approaches have tackled these incredibly challenging tasks using a variety of behavioral signals, from dwell-time to click-through data, and computational models of visual correspondence to these behavioral signals. However, behavioral signals are only rough estimations of the real underlying attention and affective preferences of the users. Indeed, users may attend to some content simply because it is salient, but not because it is really interesting, or simply because it is outrageous. With this paper, we put forward a research agenda and example work using BCI to infer users' preferences, their attentional correlates towards visual content, and their associations with affective experience. Subsequently, we link these to relevant applications, such as information retrieval, personalized steering of generative models, and crowdsourcing population estimates of affective experiences.

Collaborative Filtering (CF) typically suffers from the significant challenge of popularity bias due to the uneven distribution of items in real-world datasets. This bias leads to a significant accuracy gap between popular and unpopular items. It not only hinders accurate user preference understanding but also exacerbates the Matthew effect in recommendation systems. To alleviate popularity bias, existing efforts focus on emphasizing unpopular items or separating the correlation between item representations and their popularity. Despite the effectiveness, existing works still face two persistent challenges: (1) how to extract common supervision signals from popular items to improve the unpopular item representations, and (2) how to alleviate the representation separation caused by popularity bias. In this work, we conduct an empirical analysis of popularity bias and propose Popularity-Aware Alignment and Contrast (PAAC) to address two challenges. Specifically, we use the common supervisory signals modeled in popular item representations and propose a novel popularity-aware supervised alignment module to learn unpopular item representations. Additionally, we suggest re-weighting the contrastive learning loss to mitigate the representation separation from a popularity-centric perspective. Finally, we validate the effectiveness and rationale of PAAC in mitigating popularity bias through extensive experiments on three real-world datasets. Our code is available at //github.com/miaomiao-cai2/KDD2024-PAAC.

[HHM20] discovered, for 7 pairs (C,D) of seemingly distinct standard electoral control types, that C and D are identical: For each input I and each election system, I is a Yes instance of both C and D, or of neither. Surprisingly this had gone undetected, even as the field was score-carding how many std. control types election systems were resistant to; various "different" cells on such score cards were, unknowingly, duplicate effort on the same issue. This naturally raises the worry that other pairs of control types are also identical, and so work still is being needlessly duplicated. We determine, for all std. control types, which pairs are, for elections whose votes are linear orderings of the candidates, always identical. We show that no identical control pairs exist beyond the known 7. We for 3 central election systems determine which control pairs are identical ("collapse") with respect to those systems, and we explore containment/incomparability relationships between control pairs. For approval voting, which has a different "type" for its votes, [HHM20]'s 7 collapses still hold. But we find 14 additional collapses that hold for approval voting but not for some election systems whose votes are linear orderings. We find 1 additional collapse for veto and none for plurality. We prove that each of the 3 election systems mentioned have no collapses other than those inherited from [HHM20] or added here. But we show many new containment relationships that hold between some separating control pairs, and for each separating pair of std. control types classify its separation in terms of containment (always, and strict on some inputs) or incomparability. Our work, for the general case and these 3 important election systems, clarifies the landscape of the 44 std. control types, for each pair collapsing or separating them, and also providing finer-grained information on the separations.

In speech emotion recognition (SER), using predefined features without considering their practical importance may lead to high dimensional datasets, including redundant and irrelevant information. Consequently, high-dimensional learning often results in decreasing model accuracy while increasing computational complexity. Our work underlines the importance of carefully considering and analyzing features in order to build efficient SER systems. We present a new supervised SER method based on an efficient feature engineering approach. We pay particular attention to the explainability of results to evaluate feature relevance and refine feature sets. This is performed iteratively through feature evaluation loop, using Shapley values to boost feature selection and improve overall framework performance. Our approach allows thus to balance the benefits between model performance and transparency. The proposed method outperforms human-level performance (HLP) and state-of-the-art machine learning methods in emotion recognition on the TESS dataset.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.

Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

北京阿比特科技有限公司