This paper proposes a new easy-to-implement parameter-free gradient-based optimizer: DoWG (Distance over Weighted Gradients). We prove that DoWG is efficient -- matching the convergence rate of optimally tuned gradient descent in convex optimization up to a logarithmic factor without tuning any parameters, and universal -- automatically adapting to both smooth and nonsmooth problems. While popular algorithms following the AdaGrad framework compute a running average of the squared gradients to use for normalization, DoWG maintains a new distance-based weighted version of the running average, which is crucial to achieve the desired properties. To complement our theory, we also show empirically that DoWG trains at the edge of stability, and validate its effectiveness on practical machine learning tasks.
This paper presents WanJuan-CC, a safe and high-quality open-sourced English webtext dataset derived from Common Crawl data. The study addresses the challenges of constructing large-scale pre-training datasets for language models, which require vast amounts of high-quality data. A comprehensive process was designed to handle Common Crawl data, including extraction, heuristic rule filtering, fuzzy deduplication, content safety filtering, and data quality filtering. From approximately 68 billion original English documents, we obtained 2.22T Tokens of safe data and selected 1.0T Tokens of high-quality data as part of WanJuan-CC. We have open-sourced 100B Tokens from this dataset. The paper also provides statistical information related to data quality, enabling users to select appropriate data according to their needs. To evaluate the quality and utility of the dataset, we trained 1B-parameter and 3B-parameter models using WanJuan-CC and another dataset, RefinedWeb. Results show that WanJuan-CC performs better on validation datasets and downstream tasks.
This paper introduces SATformer, a novel Transformer-based approach for the Boolean Satisfiability (SAT) problem. Rather than solving the problem directly, SATformer approaches the problem from the opposite direction by focusing on unsatisfiability. Specifically, it models clause interactions to identify any unsatisfiable sub-problems. Using a graph neural network, we convert clauses into clause embeddings and employ a hierarchical Transformer-based model to understand clause correlation. SATformer is trained through a multi-task learning approach, using the single-bit satisfiability result and the minimal unsatisfiable core (MUC) for UNSAT problems as clause supervision. As an end-to-end learning-based satisfiability classifier, the performance of SATformer surpasses that of NeuroSAT significantly. Furthermore, we integrate the clause predictions made by SATformer into modern heuristic-based SAT solvers and validate our approach with a logic equivalence checking task. Experimental results show that our SATformer can decrease the runtime of existing solvers by an average of 21.33%.
High Dynamic Range (HDR) imaging aims to generate an artifact-free HDR image with realistic details by fusing multi-exposure Low Dynamic Range (LDR) images. Caused by large motion and severe under-/over-exposure among input LDR images, HDR imaging suffers from ghosting artifacts and fusion distortions. To address these critical issues, we propose an HDR Transformer Deformation Convolution (HDRTransDC) network to generate high-quality HDR images, which consists of the Transformer Deformable Convolution Alignment Module (TDCAM) and the Dynamic Weight Fusion Block (DWFB). To solve the ghosting artifacts, the proposed TDCAM extracts long-distance content similar to the reference feature in the entire non-reference features, which can accurately remove misalignment and fill the content occluded by moving objects. For the purpose of eliminating fusion distortions, we propose DWFB to spatially adaptively select useful information across frames to effectively fuse multi-exposed features. Extensive experiments show that our method quantitatively and qualitatively achieves state-of-the-art performance.
In this paper, we introduce a privacy-preserving stable diffusion framework leveraging homomorphic encryption, called HE-Diffusion, which primarily focuses on protecting the denoising phase of the diffusion process. HE-Diffusion is a tailored encryption framework specifically designed to align with the unique architecture of stable diffusion, ensuring both privacy and functionality. To address the inherent computational challenges, we propose a novel min-distortion method that enables efficient partial image encryption, significantly reducing the overhead without compromising the model's output quality. Furthermore, we adopt a sparse tensor representation to expedite computational operations, enhancing the overall efficiency of the privacy-preserving diffusion process. We successfully implement HE-based privacy-preserving stable diffusion inference. The experimental results show that HE-Diffusion achieves 500 times speedup compared with the baseline method, and reduces time cost of the homomorphically encrypted inference to the minute level. Both the performance and accuracy of the HE-Diffusion are on par with the plaintext counterpart. Our approach marks a significant step towards integrating advanced cryptographic techniques with state-of-the-art generative models, paving the way for privacy-preserving and efficient image generation in critical applications.
In the evolving landscape of recommender systems, the integration of Large Language Models (LLMs) such as ChatGPT marks a new era, introducing the concept of Recommendation via LLM (RecLLM). While these advancements promise unprecedented personalization and efficiency, they also bring to the fore critical concerns regarding fairness, particularly in how recommendations might inadvertently perpetuate or amplify biases associated with sensitive user attributes. In order to address these concerns, our study introduces a comprehensive evaluation framework, CFaiRLLM, aimed at evaluating (and thereby mitigating) biases on the consumer side within RecLLMs. Our research methodically assesses the fairness of RecLLMs by examining how recommendations might vary with the inclusion of sensitive attributes such as gender, age, and their intersections, through both similarity alignment and true preference alignment. By analyzing recommendations generated under different conditions-including the use of sensitive attributes in user prompts-our framework identifies potential biases in the recommendations provided. A key part of our study involves exploring how different detailed strategies for constructing user profiles (random, top-rated, recent) impact the alignment between recommendations made without consideration of sensitive attributes and those that are sensitive-attribute-aware, highlighting the bias mechanisms within RecLLMs. The findings in our study highlight notable disparities in the fairness of recommendations, particularly when sensitive attributes are integrated into the recommendation process, either individually or in combination. The analysis demonstrates that the choice of user profile sampling strategy plays a significant role in affecting fairness outcomes, highlighting the complexity of achieving fair recommendations in the era of LLMs.
This paper explores the territory that lies between best-effort Byzantine-Fault-Tolerant Conflict-free Replicated Data Types (BFT CRDTs) and totally ordered distributed ledgers, such as those implemented by Blockchains. It formally characterizes a novel class of distributed objects that only requires a First In First Out (FIFO) order on the object operations from each process (taken individually). The formalization leverages Mazurkiewicz traces to define legal sequences of operations and ensure both Strong Eventual Consistency (SEC) and Pipleline Consistency (PC). The paper presents a generic algorithm that implements this novel class of distributed objects both in a crash- and Byzantine setting. It also illustrates the practical interest of the proposed approach using four instances of this class of objects, namely money transfer, Petri nets, multi-sets, and concurrent work stealing dequeues.
Despite the recent progress in Graph Neural Networks (GNNs), it remains challenging to explain the predictions made by GNNs. Existing explanation methods mainly focus on post-hoc explanations where another explanatory model is employed to provide explanations for a trained GNN. The fact that post-hoc methods fail to reveal the original reasoning process of GNNs raises the need of building GNNs with built-in interpretability. In this work, we propose Prototype Graph Neural Network (ProtGNN), which combines prototype learning with GNNs and provides a new perspective on the explanations of GNNs. In ProtGNN, the explanations are naturally derived from the case-based reasoning process and are actually used during classification. The prediction of ProtGNN is obtained by comparing the inputs to a few learned prototypes in the latent space. Furthermore, for better interpretability and higher efficiency, a novel conditional subgraph sampling module is incorporated to indicate which part of the input graph is most similar to each prototype in ProtGNN+. Finally, we evaluate our method on a wide range of datasets and perform concrete case studies. Extensive results show that ProtGNN and ProtGNN+ can provide inherent interpretability while achieving accuracy on par with the non-interpretable counterparts.
Conventional unsupervised multi-source domain adaptation (UMDA) methods assume all source domains can be accessed directly. This neglects the privacy-preserving policy, that is, all the data and computations must be kept decentralized. There exists three problems in this scenario: (1) Minimizing the domain distance requires the pairwise calculation of the data from source and target domains, which is not accessible. (2) The communication cost and privacy security limit the application of UMDA methods (e.g., the domain adversarial training). (3) Since users have no authority to check the data quality, the irrelevant or malicious source domains are more likely to appear, which causes negative transfer. In this study, we propose a privacy-preserving UMDA paradigm named Knowledge Distillation based Decentralized Domain Adaptation (KD3A), which performs domain adaptation through the knowledge distillation on models from different source domains. KD3A solves the above problems with three components: (1) A multi-source knowledge distillation method named Knowledge Vote to learn high-quality domain consensus knowledge. (2) A dynamic weighting strategy named Consensus Focus to identify both the malicious and irrelevant domains. (3) A decentralized optimization strategy for domain distance named BatchNorm MMD. The extensive experiments on DomainNet demonstrate that KD3A is robust to the negative transfer and brings a 100x reduction of communication cost compared with other decentralized UMDA methods. Moreover, our KD3A significantly outperforms state-of-the-art UMDA approaches.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.
In this paper we address issues with image retrieval benchmarking on standard and popular Oxford 5k and Paris 6k datasets. In particular, annotation errors, the size of the dataset, and the level of challenge are addressed: new annotation for both datasets is created with an extra attention to the reliability of the ground truth. Three new protocols of varying difficulty are introduced. The protocols allow fair comparison between different methods, including those using a dataset pre-processing stage. For each dataset, 15 new challenging queries are introduced. Finally, a new set of 1M hard, semi-automatically cleaned distractors is selected. An extensive comparison of the state-of-the-art methods is performed on the new benchmark. Different types of methods are evaluated, ranging from local-feature-based to modern CNN based methods. The best results are achieved by taking the best of the two worlds. Most importantly, image retrieval appears far from being solved.