亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Next-generation communication networks are expected to exploit recent advances in data science and cutting-edge communications technologies to improve the utilization of the available communications resources. In this article, we introduce an emerging deep learning (DL) architecture, the transformer-masked autoencoder (TMAE), and discuss its potential in next-generation wireless networks. We discuss the limitations of current DL techniques in meeting the requirements of 5G and beyond 5G networks, and how the TMAE differs from the classical DL techniques can potentially address several wireless communication problems. We highlight various areas in next-generation mobile networks which can be addressed using a TMAE, including source and channel coding, estimation, and security. Furthermore, we demonstrate a case study showing how a TMAE can improve data compression performance and complexity compared to existing schemes. Finally, we discuss key challenges and open future research directions for deploying the TMAE in intelligent next-generation mobile networks.

相關內容

自動編碼器是一種人工神經網絡,用于以無監督的方式學習有效的數據編碼。自動編碼器的目的是通過訓練網絡忽略信號“噪聲”來學習一組數據的表示(編碼),通常用于降維。與簡化方面一起,學習了重構方面,在此,自動編碼器嘗試從簡化編碼中生成盡可能接近其原始輸入的表示形式,從而得到其名稱。基本模型存在幾種變體,其目的是迫使學習的輸入表示形式具有有用的屬性。自動編碼器可有效地解決許多應用問題,從面部識別到獲取單詞的語義。

Next generation mobile networks are poised to transition from monolithic structures owned and operated by single mobile network operators into multi-stakeholder networks where various parties contribute with infrastructure, resources, and services. However, a federation of networks and services brings along a crucial challenge: Guaranteeing secure and trustworthy access control among network entities of different administrative domains. This paper introduces a novel technical concept and a prototype, outlining and implementing a 5G Service-Based Architecture that utilizes Decentralized Identifiers and Verifiable Credentials instead of traditional X.509 certificates and OAuth2.0 access tokens to authenticate and authorize network functions among each other across administrative domains. This decentralized approach to identity and permission management for network functions reduces the risk of single points of failure associated with centralized public key infrastructures. It unifies access control mechanisms and lays the groundwork for lesser complex and more trustful cross-domain key management for highly collaborative network functions in a multi-party Service-Based Architecture of 6G.

Intelligent reflecting surfaces (IRSs) have several prominent advantages, including improving the level of wireless communication security and privacy. In this work, we focus on the latter aspect and introduce a strategy to counteract the presence of passive eavesdroppers overhearing transmissions from a base station towards legitimate users that are facilitated by the presence of IRSs. Specifically, we envision a transmission scheme that cycles across a number of IRS-to-user assignments, and we select them in a near-optimal fashion, thus guaranteeing both a high data rate and a good secrecy rate. Unlike most of the existing works addressing passive eavesdropping, the strategy we envision has low complexity and is suitable for scenarios where nodes are equipped with a limited number of antennas. Through our performance evaluation, we highlight the trade-off between the legitimate users' data rate and secrecy rate, and how the system parameters affect such a trade-off.

The integration of medical imaging, computational analysis, and robotic technology has brought about a significant transformation in minimally invasive surgical procedures, particularly in the realm of laparoscopic rectal surgery (LRS). This specialized surgical technique, aimed at addressing rectal cancer, requires an in-depth comprehension of the spatial dynamics within the narrow space of the pelvis. Leveraging Magnetic Resonance Imaging (MRI) scans as a foundational dataset, this study incorporates them into Computer-Aided Design (CAD) software to generate precise three-dimensional (3D) reconstructions of the patient's anatomy. At the core of this research is the analysis of the surgical workspace, a critical aspect in the optimization of robotic interventions. Sophisticated computational algorithms process MRI data within the CAD environment, meticulously calculating the dimensions and contours of the pelvic internal regions. The outcome is a nuanced understanding of both viable and restricted zones during LRS, taking into account factors such as curvature, diameter variations, and potential obstacles. This paper delves deeply into the complexities of workspace analysis for robotic LRS, illustrating the seamless collaboration between medical imaging, CAD software, and surgical robotics. Through this interdisciplinary approach, the study aims to surpass traditional surgical methodologies, offering novel insights for a paradigm shift in optimizing robotic interventions within the complex environment of the pelvis.

Recent advances in AI combine large language models (LLMs) with vision encoders that bring forward unprecedented technical capabilities to leverage for a wide range of healthcare applications. Focusing on the domain of radiology, vision-language models (VLMs) achieve good performance results for tasks such as generating radiology findings based on a patient's medical image, or answering visual questions (e.g., 'Where are the nodules in this chest X-ray?'). However, the clinical utility of potential applications of these capabilities is currently underexplored. We engaged in an iterative, multidisciplinary design process to envision clinically relevant VLM interactions, and co-designed four VLM use concepts: Draft Report Generation, Augmented Report Review, Visual Search and Querying, and Patient Imaging History Highlights. We studied these concepts with 13 radiologists and clinicians who assessed the VLM concepts as valuable, yet articulated many design considerations. Reflecting on our findings, we discuss implications for integrating VLM capabilities in radiology, and for healthcare AI more generally.

Sociotechnical research increasingly includes the social sub-networks that emerge from large-scale sociotechnical infrastructure, including the infrastructure for building open source software. This paper addresses these numerous sub-networks as advantageous for researchers. It provides a methodological synthesis focusing on how researchers can best span adjacent social sub-networks during engaged field research. Specifically, we describe practices and artifacts that aid movement from one social subsystem within a more extensive technical infrastructure to another. To surface the importance of spanning sub-networks, we incorporate a discussion of social capital and the role of technical infrastructure in its development for sociotechnical researchers. We then characterize a five-step process for spanning social sub-networks during engaged field research: commitment, context mapping, jargon competence, returning value, and bridging. We then present our experience studying corporate open source software projects and the role of that experience in accelerating our work in open source scientific software research as described through the lens of bridging social capital. Based on our analysis, we offer recommendations for engaging in fieldwork in adjacent social sub-networks that share a technical context and discussion of how the relationship between social and technically acquired social capital is a missing but critical methodological dimension for research on large-scale sociotechnical research.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

Convolutional neural networks have made significant progresses in edge detection by progressively exploring the context and semantic features. However, local details are gradually suppressed with the enlarging of receptive fields. Recently, vision transformer has shown excellent capability in capturing long-range dependencies. Inspired by this, we propose a novel transformer-based edge detector, \emph{Edge Detection TransformER (EDTER)}, to extract clear and crisp object boundaries and meaningful edges by exploiting the full image context information and detailed local cues simultaneously. EDTER works in two stages. In Stage I, a global transformer encoder is used to capture long-range global context on coarse-grained image patches. Then in Stage II, a local transformer encoder works on fine-grained patches to excavate the short-range local cues. Each transformer encoder is followed by an elaborately designed Bi-directional Multi-Level Aggregation decoder to achieve high-resolution features. Finally, the global context and local cues are combined by a Feature Fusion Module and fed into a decision head for edge prediction. Extensive experiments on BSDS500, NYUDv2, and Multicue demonstrate the superiority of EDTER in comparison with state-of-the-arts.

A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司