The success of ChatGPT validates the potential of large language models (LLMs) in artificial general intelligence (AGI). Subsequently, the release of LLMs has sparked the open-source community's interest in instruction-tuning, which is deemed to accelerate ChatGPT's replication process. However, research on instruction-tuning LLMs in Chinese, the world's most spoken language, is still in its early stages. Therefore, this paper makes an in-depth empirical study of instruction-tuning LLMs in Chinese, which can serve as a cookbook that provides valuable findings for effectively customizing LLMs that can better respond to Chinese instructions. Specifically, we systematically explore the impact of LLM bases, parameter-efficient methods, instruction data types, which are the three most important elements for instruction-tuning. Besides, we also conduct experiment to study the impact of other factors, e.g., chain-of-thought data and human-value alignment. We hope that this empirical study can make a modest contribution to the open Chinese version of ChatGPT. This paper will release a powerful Chinese LLMs that is comparable to ChatGLM. The code and data are available at //github.com/PhoebusSi/Alpaca-CoT.
The lack of transparency and explainability hinders the clinical adoption of Machine learning (ML) algorithms. While explainable artificial intelligence (XAI) methods have been proposed, little research has focused on the agreement between these methods and expert clinical knowledge. This study applies current state-of-the-art explainability methods to clinical decision support algorithms developed for Electronic Medical Records (EMR) data to analyse the concordance between these factors and discusses causes for identified discrepancies from a clinical and technical perspective. Important factors for achieving trustworthy XAI solutions for clinical decision support are also discussed.
Free Content Websites (FCWs) are a significant element of the Web, and realizing their use is essential. This study analyzes FCWs worldwide by studying how they correlate with different network sizes, cloud service providers, and countries, depending on the type of content they offer. Additionally, we compare these findings with those of premium content websites (PCWs). Our analysis concluded that FCWs correlate mainly with networks of medium size, which are associated with a higher concentration of malicious websites. Moreover, we found a strong correlation between PCWs, cloud, and country hosting patterns. At the same time, some correlations were also observed concerning FCWs but with distinct patterns contrasting each other for both types. Our investigation contributes to comprehending the FCW ecosystem through correlation analysis, and the indicative results point toward controlling the potential risks caused by these sites through adequate segregation and filtering due to their concentration.
The latest advancements in large language models (LLMs) have revolutionized the field of natural language processing (NLP). Inspired by the success of LLMs in NLP tasks, some recent work has begun investigating the potential of applying LLMs in graph learning tasks. However, most of the existing work focuses on utilizing LLMs as powerful node feature augmenters, leaving employing LLMs to enhance graph topological structures an understudied problem. In this work, we explore how to leverage the information retrieval and text generation capabilities of LLMs to refine/enhance the topological structure of text-attributed graphs (TAGs) under the node classification setting. First, we propose using LLMs to help remove unreliable edges and add reliable ones in the TAG. Specifically, we first let the LLM output the semantic similarity between node attributes through delicate prompt designs, and then perform edge deletion and edge addition based on the similarity. Second, we propose using pseudo-labels generated by the LLM to improve graph topology, that is, we introduce the pseudo-label propagation as a regularization to guide the graph neural network (GNN) in learning proper edge weights. Finally, we incorporate the two aforementioned LLM-based methods for graph topological refinement into the process of GNN training, and perform extensive experiments on four real-world datasets. The experimental results demonstrate the effectiveness of LLM-based graph topology refinement (achieving a 0.15%--2.47% performance gain on public benchmarks).
Although large language models (LLMs) have achieved significant success in various tasks, they often struggle with hallucination problems, especially in scenarios requiring deep and responsible reasoning. These issues could be partially addressed by introducing external knowledge graphs (KG) in LLM reasoning. In this paper, we propose a new LLM-KG integrating paradigm ``$\hbox{LLM}\otimes\hbox{KG}$'' which treats the LLM as an agent to interactively explore related entities and relations on KGs and perform reasoning based on the retrieved knowledge. We further implement this paradigm by introducing a new approach called Think-on-Graph (ToG), in which the LLM agent iteratively executes beam search on KG, discovers the most promising reasoning paths, and returns the most likely reasoning results. We use a number of well-designed experiments to examine and illustrate the following advantages of ToG: 1) compared with LLMs, ToG has better deep reasoning power; 2) ToG has the ability of knowledge traceability and knowledge correctability by leveraging LLMs reasoning and expert feedback; 3) ToG provides a flexible plug-and-play framework for different LLMs, KGs and prompting strategies without any additional training cost; 4) the performance of ToG with small LLM models could exceed large LLM such as GPT-4 in certain scenarios and this reduces the cost of LLM deployment and application. As a training-free method with lower computational cost and better generality, ToG achieves overall SOTA in 6 out of 9 datasets where most previous SOTAs rely on additional training.
Linear structural causal models (SCMs) are used to express and analyse the relationships between random variables. Direct causal effects are represented as directed edges and confounding factors as bidirected edges. Identifying the causal parameters from correlations between the nodes is an open problem in artificial intelligence. In this paper, we study SCMs whose directed component forms a tree. Van der Zander et al. (AISTATS'22, PLMR 151, pp. 6770--6792, 2022) give a PSPACE-algorithm for the identification problem in this case, which is a significant improvement over the general Gr\"obner basis approach, which has doubly-exponential time complexity in the number of structural parameters. In this work, we present a randomized polynomial-time algorithm, which solves the identification problem for tree-shaped SCMs. For every structural parameter, our algorithms decides whether it is generically identifiable, generically 2-identifiable, or generically unidentifiable. (No other cases can occur.) In the first two cases, it provides one or two fractional affine square root terms of polynomials (FASTPs) for the corresponding parameter, respectively.
Large language models (LLMs) are capable of answering knowledge-intensive complex questions with chain-of-thought (CoT) reasoning. However, they tend to generate factually incorrect reasoning steps when the required knowledge is not available or up-to-date in models' parameters. Recent works turn to retrieving external knowledge to augment CoT reasoning. Despite being promising, these chain-based methods suffer from: 1) Negative retrieval. Unnecessary or incorrect retrieval may mislead the reasoning; 2) Limited sight. Lacking the ability to look backward or forward, a local error in one step will propagate along the chain. In this paper, we propose a novel approach: Probabilistic Tree-of-thought Reasoning (ProbTree). First, LLMs translate a complex question into a query tree, in which each non-root node denotes a sub-question of its parent node. Then, probabilistic reasoning is conducted over the tree, by solving questions from leaf to root considering the confidence of both question decomposing and answering. During reasoning, for leaf nodes, LLMs choose a more confident answer from Closed-book QA that employs parametric knowledge and Open-book QA that employs retrieved external knowledge, thus eliminating the negative retrieval problem. For non-leaf nodes, with the hierarchical structure, LLMs have broader sights and are able to globally reason with the information from child nodes, thus recovering from local errors. The experiments on three Complex QA datasets under the open-domain setting show that our approach outperforms SOTA methods significantly, demonstrating the effect of probabilistic tree-of-thought reasoning.
Task-oriented conversational datasets often lack topic variability and linguistic diversity. However, with the advent of Large Language Models (LLMs) pretrained on extensive, multilingual and diverse text data, these limitations seem overcome. Nevertheless, their generalisability to different languages and domains in dialogue applications remains uncertain without benchmarking datasets. This paper presents a holistic annotation approach for emotion and conversational quality in the context of bilingual customer support conversations. By performing annotations that take into consideration the complete instances that compose a conversation, one can form a broader perspective of the dialogue as a whole. Furthermore, it provides a unique and valuable resource for the development of text classification models. To this end, we present benchmarks for Emotion Recognition and Dialogue Quality Estimation and show that further research is needed to leverage these models in a production setting.
Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at //github.com/hyintell/awesome-refreshing-llms
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.