亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Event-based sensors, distinguished by their high temporal resolution of 1$\mathrm{\mu s}$ and a dynamic range of 120$\mathrm{dB}$, stand out as ideal tools for deployment in fast-paced settings like vehicles and drones. Traditional object detection techniques that utilize Artificial Neural Networks (ANNs) face challenges due to the sparse and asynchronous nature of the events these sensors capture. In contrast, Spiking Neural Networks (SNNs) offer a promising alternative, providing a temporal representation that is inherently aligned with event-based data. This paper explores the unique membrane potential dynamics of SNNs and their ability to modulate sparse events. We introduce an innovative spike-triggered adaptive threshold mechanism designed for stable training. Building on these insights, we present a specialized spiking feature pyramid network (SpikeFPN) optimized for automotive event-based object detection. Comprehensive evaluations demonstrate that SpikeFPN surpasses both traditional SNNs and advanced ANNs enhanced with attention mechanisms. Evidently, SpikeFPN achieves a mean Average Precision (mAP) of 0.477 on the {GEN1 Automotive Detection (GAD)} benchmark dataset, marking a significant increase of 9.7\% over the previous best SNN. Moreover, the efficient design of SpikeFPN ensures robust performance while optimizing computational resources, attributed to its innate sparse computation capabilities.

相關內容

In this paper, we consider the counting function $E_P(y) = |P_{y} \cap Z^{n_x}|$ for a parametric polyhedron $P_{y} = \{x \in R^{n_x} \colon A x \leq b + B y\}$, where $y \in R^{n_y}$. We give a new representation of $E_P(y)$, called a \emph{piece-wise step-polynomial with periodic coefficients}, which is a generalization of piece-wise step-polynomials and integer/rational Ehrhart's quasi-polynomials. It gives the fastest way to calculate $E_P(y)$ in certain scenarios. The most important cases are the following: 1) We show that, for any $y \in Q^k$ and parametric polyhedron $P_y$, defined by a standard-form system $A x = y,\, x \geq 0$ with a fixed number of equalities, $E_P(y)$ can be computed by a $poly\bigl(n, \|A\|_{\infty}\bigr)$-time algorithm; 2) Assuming that the co-dimension is fixed, we show that integer/rational Ehrhart's quasi-polynomials of a polytope can be computed by FPT-algorithms, parameterized by sub-determinants of $A$ or its elements; 3) Our representation of $E_P$ is more efficient than other known approaches, if $A$ has bounded elements, especially if it is sparse in addition. Additionally, we provide a discussion about possible applications in the area of compiler optimization. In some "natural" assumptions on a program code, our approach has the fastest complexity bounds.

We study the existence of finite characterisations for modal formulas. A finite characterisation of a modal formula $\varphi$ is a finite collection of positive and negative examples that distinguishes $\varphi$ from every other, non-equivalent modal formula, where an example is a finite pointed Kripke structure. This definition can be restricted to specific frame classes and to fragments of the modal language: a modal fragment $L$ admits finite characterisations with respect to a frame class $F$ if every formula $\varphi\in L$ has a finite characterisation with respect to $L$ consting of examples that are based on frames in $F$. Finite characterisations are useful for illustration, interactive specification, and debugging of formal specifications, and their existence is a precondition for exact learnability with membership queries. We show that the full modal language admits finite characterisations with respect to a frame class $F$ only when the modal logic of $F$ is locally tabular. We then study which modal fragments, freely generated by some set of connectives, admit finite characterisations. Our main result is that the positive modal language without the truth-constants $\top$ and $\bot$ admits finite characterisations w.r.t. the class of all frames. This result is essentially optimal: finite characterizability fails when the language is extended with the truth constant $\top$ or $\bot$ or with all but very limited forms of negation.

A minimum storage regenerating (MSR) subspace family of $\mathbb{F}_q^{2m}$ is a set $\mathcal{S}$ of $m$-spaces in $\mathbb{F}_q^{2m}$ such that for any $m$-space $S$ in $\mathcal{S}$ there exists an element in $\mathrm{PGL}(2m, q)$ which maps $S$ to a complement and fixes $\mathcal{S} \setminus \{ S \}$ pointwise. We show that an MSR subspace family of $2$-spaces in $\mathbb{F}_q^4$ has at most size $6$ with equality if and only if it is a particular subset of a Segre variety. This implies that an $(n, n-2, 4)$-MSR code has $n \leq 9$.

We revisit the moving least squares (MLS) approximation scheme on the sphere $\mathbb S^{d-1} \subset \mathbb R^d$, where $d>1$. It is well known that using the spherical harmonics up to degree $L \in \mathbb N$ as ansatz space yields for functions in $\mathcal C^{L+1}(\mathbb S^{d-1})$ the approximation order $\mathcal O \left( h^{L+1} \right)$, where $h$ denotes the fill distance of the sampling nodes. In this paper we show that the dimension of the ansatz space can be almost halved, by including only spherical harmonics of even or odd degree up to $L$, while preserving the same order of approximation. Numerical experiments indicate that using the reduced ansatz space is essential to ensure the numerical stability of the MLS approximation scheme as $h \to 0$. Finally, we compare our approach with an MLS approximation scheme that uses polynomials on the tangent space as ansatz space.

We propose a general method for optimally approximating an arbitrary matrix $\mathbf{M}$ by a structured matrix $\mathbf{T}$ (circulant, Toeplitz/Hankel, etc.) and examine its use for estimating the spectra of genomic linkage disequilibrium matrices. This application is prototypical of a variety of genomic and proteomic problems that demand robustness to incomplete biosequence information. We perform a simulation study and corroborative test of our method using real genomic data from the Mouse Genome Database. The results confirm the predicted utility of the method and provide strong evidence of its potential value to a wide range of bioinformatics applications. Our optimal general matrix approximation method is expected to be of independent interest to an even broader range of applications in applied mathematics and engineering.

Posterior sampling, i.e., exponential mechanism to sample from the posterior distribution, provides $\varepsilon$-pure differential privacy (DP) guarantees and does not suffer from potentially unbounded privacy breach introduced by $(\varepsilon,\delta)$-approximate DP. In practice, however, one needs to apply approximate sampling methods such as Markov chain Monte Carlo (MCMC), thus re-introducing the unappealing $\delta$-approximation error into the privacy guarantees. To bridge this gap, we propose the Approximate SAample Perturbation (abbr. ASAP) algorithm which perturbs an MCMC sample with noise proportional to its Wasserstein-infinity ($W_\infty$) distance from a reference distribution that satisfies pure DP or pure Gaussian DP (i.e., $\delta=0$). We then leverage a Metropolis-Hastings algorithm to generate the sample and prove that the algorithm converges in W$_\infty$ distance. We show that by combining our new techniques with a careful localization step, we obtain the first nearly linear-time algorithm that achieves the optimal rates in the DP-ERM problem with strongly convex and smooth losses.

We study several polygonal curve problems under the Fr\'{e}chet distance via algebraic geometric methods. Let $\mathbb{X}_m^d$ and $\mathbb{X}_k^d$ be the spaces of all polygonal curves of $m$ and $k$ vertices in $\mathbb{R}^d$, respectively. We assume that $k \leq m$. Let $\mathcal{R}^d_{k,m}$ be the set of ranges in $\mathbb{X}_m^d$ for all possible metric balls of polygonal curves in $\mathbb{X}_k^d$ under the Fr\'{e}chet distance. We prove a nearly optimal bound of $O(dk\log (km))$ on the VC dimension of the range space $(\mathbb{X}_m^d,\mathcal{R}_{k,m}^d)$, improving on the previous $O(d^2k^2\log(dkm))$ upper bound and approaching the current $\Omega(dk\log k)$ lower bound. Our upper bound also holds for the weak Fr\'{e}chet distance. We also obtain exact solutions that are hitherto unknown for curve simplification, range searching, nearest neighbor search, and distance oracle.

Distribution function is essential in statistical inference, and connected with samples to form a directed closed loop by the correspondence theorem in measure theory and the Glivenko-Cantelli and Donsker properties. This connection creates a paradigm for statistical inference. However, existing distribution functions are defined in Euclidean spaces and no longer convenient to use in rapidly evolving data objects of complex nature. It is imperative to develop the concept of distribution function in a more general space to meet emerging needs. Note that the linearity allows us to use hypercubes to define the distribution function in a Euclidean space, but without the linearity in a metric space, we must work with the metric to investigate the probability measure. We introduce a class of metric distribution functions through the metric between random objects and a fixed location in metric spaces. We overcome this challenging step by proving the correspondence theorem and the Glivenko-Cantelli theorem for metric distribution functions in metric spaces that lie the foundation for conducting rational statistical inference for metric space-valued data. Then, we develop homogeneity test and mutual independence test for non-Euclidean random objects, and present comprehensive empirical evidence to support the performance of our proposed methods.

Constructing a similarity graph from a set $X$ of data points in $\mathbb{R}^d$ is the first step of many modern clustering algorithms. However, typical constructions of a similarity graph have high time complexity, and a quadratic space dependency with respect to $|X|$. We address this limitation and present a new algorithmic framework that constructs a sparse approximation of the fully connected similarity graph while preserving its cluster structure. Our presented algorithm is based on the kernel density estimation problem, and is applicable for arbitrary kernel functions. We compare our designed algorithm with the well-known implementations from the scikit-learn library and the FAISS library, and find that our method significantly outperforms the implementation from both libraries on a variety of datasets.

In multi-turn dialog, utterances do not always take the full form of sentences \cite{Carbonell1983DiscoursePA}, which naturally makes understanding the dialog context more difficult. However, it is essential to fully grasp the dialog context to generate a reasonable response. Hence, in this paper, we propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question, where the question is focused on the omitted information in the dialog. Enlightened by the multi-task learning scheme, we propose a joint framework that unifies these two tasks, sharing the same encoder to extract the common and task-invariant features with different decoders to learn task-specific features. To better fusing information from the question and the dialog history in the encoding part, we propose to augment the Transformer architecture with a memory updater, which is designed to selectively store and update the history dialog information so as to support downstream tasks. For the experiment, we employ human annotators to write and examine a large-scale dialog reading comprehension dataset. Extensive experiments are conducted on this dataset, and the results show that the proposed model brings substantial improvements over several strong baselines on both tasks. In this way, we demonstrate that reasoning can indeed help better response generation and vice versa. We release our large-scale dataset for further research.

北京阿比特科技有限公司