We review the scholarly contributions that utilise Natural Language Processing (NLP) methods to support the design process. Using a heuristic approach, we collected 223 articles published in 32 journals and within the period 1991-present. We present state-of-the-art NLP in-and-for design research by reviewing these articles according to the type of natural language text sources: internal reports, design concepts, discourse transcripts, technical publications, consumer opinions, and others. Upon summarizing and identifying the gaps in these contributions, we utilise an existing design innovation framework to identify the applications that are currently being supported by NLP. We then propose a few methodological and theoretical directions for future NLP in-and-for design research.
While commonsense knowledge acquisition and reasoning has traditionally been a core research topic in the knowledge representation and reasoning community, recent years have seen a surge of interest in the natural language processing community in developing pre-trained models and testing their ability to address a variety of newly designed commonsense knowledge reasoning and generation tasks. This paper presents a survey of these tasks, discusses the strengths and weaknesses of state-of-the-art pre-trained models for commonsense reasoning and generation as revealed by these tasks, and reflects on future research directions.
In the world of Information Technology, new computing paradigms, driven by requirements of different classes of problems and applications, emerge rapidly. These new computing paradigms pose many new research challenges. Researchers from different disciplines are working together to develop innovative solutions addressing them. In newer research areas with many unknowns, creating roadmaps, enabling tools, inspiring technological and application demonstrators offer confidence and prove feasibility and effectiveness of new paradigm. Drawing on our experience, we share strategy for advancing the field and community building in new and emerging computing research areas. We discuss how the development simulators can be cost-effective in accelerating design of real systems. We highlight strategic role played by different types of publications, conferences, and educational programs. We illustrate effectiveness of elements of our strategy with a case study on progression of cloud computing paradigm.
Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
Question Answering has recently received high attention from artificial intelligence communities due to the advancements in learning technologies. Early question answering models used rule-based approaches and moved to the statistical approach to address the vastly available information. However, statistical approaches are shown to underperform in handling the dynamic nature and the variation of language. Therefore, learning models have shown the capability of handling the dynamic nature and variations in language. Many deep learning methods have been introduced to question answering. Most of the deep learning approaches have shown to achieve higher results compared to machine learning and statistical methods. The dynamic nature of language has profited from the nonlinear learning in deep learning. This has created prominent success and a spike in work on question answering. This paper discusses the successes and challenges in question answering question answering systems and techniques that are used in these challenges.
The field of natural language processing has seen impressive progress in recent years, with neural network models replacing many of the traditional systems. A plethora of new models have been proposed, many of which are thought to be opaque compared to their feature-rich counterparts. This has led researchers to analyze, interpret, and evaluate neural networks in novel and more fine-grained ways. In this survey paper, we review analysis methods in neural language processing, categorize them according to prominent research trends, highlight existing limitations, and point to potential directions for future work.
Automatic summarization of natural language is a current topic in computer science research and industry, studied for decades because of its usefulness across multiple domains. For example, summarization is necessary to create reviews such as this one. Research and applications have achieved some success in extractive summarization (where key sentences are curated), however, abstractive summarization (synthesis and re-stating) is a hard problem and generally unsolved in computer science. This literature review contrasts historical progress up through current state of the art, comparing dimensions such as: extractive vs. abstractive, supervised vs. unsupervised, NLP (Natural Language Processing) vs Knowledge-based, deep learning vs algorithms, structured vs. unstructured sources, and measurement metrics such as Rouge and BLEU. Multiple dimensions are contrasted since current research uses combinations of approaches as seen in the review matrix. Throughout this summary, synthesis and critique is provided. This review concludes with insights for improved abstractive summarization measurement, with surprising implications for detecting understanding and comprehension in general.
Neural word embeddings have been widely used in biomedical Natural Language Processing (NLP) applications since they provide vector representations of words that capture the semantic properties of words and the linguistic relationship between words. Many biomedical applications use different textual sources to train word embeddings and apply these word embeddings to downstream biomedical applications. However, there has been little work on comprehensively evaluating the word embeddings trained from these resources. In this study, we provide a comprehensive empirical evaluation of word embeddings trained from four different resources, namely clinical notes, biomedical publications, Wikepedia, and news. We perform the evaluation qualitatively and quantitatively. In qualitative evaluation, we manually inspect five most similar medical words to a given set of target medical words, and then analyze word embeddings through the visualization of those word embeddings. Quantitative evaluation falls into two categories: extrinsic and intrinsic evaluation. Based on the evaluation results, we can draw the following conclusions. First, EHR and PubMed can capture the semantics of medical terms better than GloVe and Google News and find more relevant similar medical terms. Second, the medical semantic similarity captured by the word embeddings trained on EHR and PubMed are closer to human experts' judgments, compared to these trained on GloVe and Google News. Third, there does not exist a consistent global ranking of word embedding quality for downstream biomedical NLP applications. However, adding word embeddings as extra features will improve results on most downstream tasks. Finally, word embeddings trained from a similar domain corpus do not necessarily have better performance than other word embeddings for any downstream biomedical tasks.
This paper surveys the current state of the art in Natural Language Generation (NLG), defined as the task of generating text or speech from non-linguistic input. A survey of NLG is timely in view of the changes that the field has undergone over the past decade or so, especially in relation to new (usually data-driven) methods, as well as new applications of NLG technology. This survey therefore aims to (a) give an up-to-date synthesis of research on the core tasks in NLG and the architectures adopted in which such tasks are organised; (b) highlight a number of relatively recent research topics that have arisen partly as a result of growing synergies between NLG and other areas of artificial intelligence; (c) draw attention to the challenges in NLG evaluation, relating them to similar challenges faced in other areas of Natural Language Processing, with an emphasis on different evaluation methods and the relationships between them.
Natural language processing (NLP) has recently gained much attention for representing and analysing human language computationally. It has spread its applications in various fields such as machine translation, email spam detection, information extraction, summarization, medical, and question answering etc. The paper distinguishes four phases by discussing different levels of NLP and components of Natural Language Generation (NLG) followed by presenting the history and evolution of NLP, state of the art presenting the various applications of NLP and current trends and challenges.