亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, significant advancements have been made in the text generation capabilities of Large Language Models (LLMs), demonstrating exceptional performance in downstream tasks such as abstract summarization, dialogue generation, and data-to-text conversion. However, their generative abilities also pose risks such as the rapid spread of fake news, infringement of datasets/LLM copyrights, and challenges to academic integrity. Text watermarking technology emerges as a potential solution. By embedding invisible yet detectable patterns in generated texts, it helps in tracking and verifying text origins, thus preventing misuse and piracy. This survey aims to comprehensively summarize current text watermarking technologies, covering three main aspects: (1) an overview and comparison of different text watermarking techniques; (2) evaluation methods for text watermarking algorithms, including their success rate, impact on text quality, robustness, and unforgeability; (3) potential applications of text watermarking technologys. This survey aims to help researchers thoroughly understanding the text watermarking technologies, thereby fostering further development.

相關內容

大(da)語(yu)言模型是(shi)基于(yu)海量(liang)(liang)(liang)文本(ben)(ben)數據(ju)訓練的(de)深(shen)(shen)度學(xue)習模型。它(ta)不僅能(neng)(neng)夠(gou)生成自(zi)然語(yu)言文本(ben)(ben),還能(neng)(neng)夠(gou)深(shen)(shen)入(ru)理(li)解(jie)文本(ben)(ben)含義,處理(li)各種自(zi)然語(yu)言任(ren)務(wu),如文本(ben)(ben)摘(zhai)要、問答、翻譯等。2023年,大(da)語(yu)言模型及其(qi)(qi)在人工智能(neng)(neng)領域的(de)應用(yong)已成為(wei)全球科(ke)技研(yan)究的(de)熱點,其(qi)(qi)在規模上的(de)增長尤為(wei)引人注(zhu)目,參(can)數量(liang)(liang)(liang)已從最初的(de)十幾億(yi)躍升(sheng)到如今的(de)一(yi)萬億(yi)。參(can)數量(liang)(liang)(liang)的(de)提(ti)升(sheng)使得模型能(neng)(neng)夠(gou)更(geng)加精細地捕捉(zhuo)人類語(yu)言微(wei)妙之處,更(geng)加深(shen)(shen)入(ru)地理(li)解(jie)人類語(yu)言的(de)復雜性。在過去的(de)一(yi)年里,大(da)語(yu)言模型在吸(xi)納新知識、分(fen)解(jie)復雜任(ren)務(wu)以及圖(tu)文對齊等多方面都有顯著(zhu)提(ti)升(sheng)。隨(sui)著(zhu)技術的(de)不斷成熟(shu),它(ta)將(jiang)不斷拓展其(qi)(qi)應用(yong)范(fan)圍,為(wei)人類提(ti)供更(geng)加智能(neng)(neng)化(hua)和(he)(he)個性化(hua)的(de)服(fu)務(wu),進一(yi)步改善人們的(de)生活和(he)(he)生產方式。

In the field of natural language processing (NLP), Large Language Models (LLMs) have precipitated a paradigm shift, markedly enhancing performance in natural language generation tasks. Despite these advancements, the comprehensive evaluation of LLMs remains an inevitable challenge for the community. Recently, the utilization of Multiple Choice Question Answering (MCQA) as a benchmark for LLMs has gained considerable traction. This study investigates the rationality of MCQA as an evaluation method for LLMs. If LLMs genuinely understand the semantics of questions, their performance should exhibit consistency across the varied configurations derived from the same questions. Contrary to this expectation, our empirical findings suggest a notable disparity in the consistency of LLM responses, which we define as REsponse VAriability Syndrome (REVAS) of the LLMs, indicating that current MCQA-based benchmarks may not adequately capture the true capabilities of LLMs, which underscores the need for more robust evaluation mechanisms in assessing the performance of LLMs.

In this work, we demonstrate that the Bochner integral representation of the Algebraic Riccati Equations (ARE) are well-posed without any compactness assumptions on the coefficient and semigroup operators. From this result, we then are able to determine that, under some assumptions, the solution to the Galerkin approximations to these equations are convergent to the infinite dimensional solution. Going further, we apply this general result to demonstrate that the finite element approximation to the ARE are optimal for weakly damped wave semigroup processes in the $H^1(\Omega) \times L^2(\Omega)$ norm. Optimal convergence rates of the functional gain for a weakly damped wave optimal control system in both the $H^1(\Omega) \times L^2(\Omega)$ and $L^2(\Omega)\times L^2(\Omega)$ norms are demonstrated in the numerical examples.

Neural Style Transfer (NST) refers to a class of algorithms able to manipulate an element, most often images, to adopt the appearance or style of another one. Each element is defined as a combination of Content and Style: the Content can be conceptually defined as the what and the Style as the how of said element. In this context, we propose a custom NST framework for transferring a set of styles to the motion of a robotic manipulator, e.g., the same robotic task can be carried out in an angry, happy, calm, or sad way. An autoencoder architecture extracts and defines the Content and the Style of the target robot motions. A Twin Delayed Deep Deterministic Policy Gradient (TD3) network generates the robot control policy using the loss defined by the autoencoder. The proposed Neural Policy Style Transfer TD3 (NPST3) alters the robot motion by introducing the trained style. Such an approach can be implemented either offline, for carrying out autonomous robot motions in dynamic environments, or online, for adapting at runtime the style of a teleoperated robot. The considered styles can be learned online from human demonstrations. We carried out an evaluation with human subjects enrolling 73 volunteers, asking them to recognize the style behind some representative robotic motions. Results show a good recognition rate, proving that it is possible to convey different styles to a robot using this approach.

We present a simple argument using Promise Theory and dimensional analysis for the Dunbar scaling hierarchy, supported by recent data from group formation in Wikipedia editing. We show how the assumption of a common priority seeds group alignment until the costs associated with attending to the group outweigh the benefits in a detailed balance scenario. Subject to partial efficiency of implementing promised intentions, we can reproduce a series of compatible rates that balance growth with entropy.

This paper presents a framework that integrates Large Language Models (LLMs) into translation validation, targeting LLVM compiler transformations where formal verification tools fall short. Our framework first utilizes existing formal verification tools for translation validation. In this work, we use Alive2, a well-known tool in LLVM compiler verification, as an example. When formal verification tools are unable to confirm a transformation's soundness, our framework employs fine-tuned LLMs for prediction. It then applies fuzzing to transformations predicted as potentially unsound by the LLMs due to return values or memory inconsistencies, aiming to find counterexamples. In cases where transformations are unsound for other reasons or sound, or if no counterexamples emerge, the framework directly reports these outcomes without further fuzzing. This methodology has shown effectiveness in complex application such as deep-learning accelerator designs, where traditional formal verification tools struggle.

Despite their exceptional capabilities, large language models (LLMs) are prone to generating unintended text due to false or outdated knowledge. Given the resource-intensive nature of retraining LLMs, there has been a notable increase in the development of knowledge editing. However, current approaches and evaluations rarely explore the perturbation of editing on neighboring knowledge. This paper studies whether updating new knowledge to LLMs perturbs the neighboring knowledge encapsulated within them. Specifically, we seek to figure out whether appending a new answer into an answer list to a factual question leads to catastrophic forgetting of original correct answers in this list, as well as unintentional inclusion of incorrect answers. A metric of additivity is introduced and a benchmark dubbed as Perturbation Evaluation of Appending Knowledge (PEAK) is constructed to evaluate the degree of perturbation to neighboring knowledge when appending new knowledge. Besides, a plug-and-play framework termed Appending via Preservation and Prevention (APP) is proposed to mitigate the neighboring perturbation by maintaining the integrity of the answer list. Experiments demonstrate the effectiveness of APP coupling with four editing methods on three LLMs.

Despite the Internet's continued growth, it increasingly depends on a small set of service providers to support Domain Name System (DNS) and web content hosting. This trend poses many potential threats including susceptibility to outages, failures, and potential censorship by providers. This paper aims to quantify consolidation in terms of popular domains' reliance on a small set of organizations for both DNS and web hosting. We highlight the extent to which a set of relatively few platforms host the authoritative name servers and web content for the top million websites. Our results show that both DNS and web hosting are concentrated, with Cloudflare and Amazon hosting over $30\%$ of the domains for both services. With the addition of Akamai, Fastly, and Google, these five organizations host $60\%$ of index pages in the Tranco top 10K, as well as the majority of external page resources. These trends are consistent across six different global vantage points, indicating that consolidation is happening globally and popular organizations can influence users' online experience across the world.

This paper explores the feasibility and performance of on-device large language model (LLM) inference on various Apple iPhone models. Amidst the rapid evolution of generative AI, on-device LLMs offer solutions to privacy, security, and connectivity challenges inherent in cloud-based models. Leveraging existing literature on running multi-billion parameter LLMs on resource-limited devices, our study examines the thermal effects and interaction speeds of a high-performing LLM across different smartphone generations. We present real-world performance results, providing insights into on-device inference capabilities.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.

北京阿比特科技有限公司