International academic collaborations cultivate diversity in the research landscape and facilitate multiperspective methods, as the scope of each country's science depends on its needs, history, wealth etc. Moreover the quality of science differ significantly amongst nations\cite{king2004scientific}, which renders international collaborations a potential source to understand the dynamics between countries and their advancements. Analyzing these collaborations can reveal sharing expertise between two countries in different fields, the most well-known institutions of a nation, the overall success of collaborative efforts compared to local ones etc. Such analysis were initially performed using statistical metrics \cite{melin1996studying}, but network analysis has later proven much more expressive \cite{wagner2005mapping,gonzalez2008coauthorship}. In this exploratory analysis, we aim to examine the collaboration patterns between French and US institutions. Towards this, we capitalize on the Microsoft Academic Graph MAG \cite{sinha2015overview}, the largest open bibliographic dataset that contains detailed information for authors, publications and institutions. We use the coordinates of the world map to tally affiliations to France or USA. In cases where the coordinates of an affiliation were absent, we used its Wikipedia url and named entity recognition to identify the country of its address in the Wikipedia page. We need to stress that institute names have been volatile (due to University federations created) in the last decade in France, so this is a best effort trial. The results indicate an intensive and increasing scientific production in with , with certain institutions such as Harvard, MIT and CNRS standing out.
Human action recognition and analysis have great demand and important application significance in video surveillance, video retrieval, and human-computer interaction. The task of human action quality evaluation requires the intelligent system to automatically and objectively evaluate the action completed by the human. The action quality assessment model can reduce the human and material resources spent in action evaluation and reduce subjectivity. In this paper, we provide a comprehensive survey of existing papers on video-based action quality assessment. Different from human action recognition, the application scenario of action quality assessment is relatively narrow. Most of the existing work focuses on sports and medical care. We first introduce the definition and challenges of human action quality assessment. Then we present the existing datasets and evaluation metrics. In addition, we summarized the methods of sports and medical care according to the model categories and publishing institutions according to the characteristics of the two fields. At the end, combined with recent work, the promising development direction in action quality assessment is discussed.
Forensic firearms identification, the determination by a trained firearms examiner as to whether or not bullets or cartridges came from a common weapon, has long been a mainstay in the criminal courts. Reliability of forensic firearms identification has been challenged in the general scientific community, and, in response, several studies have been carried out aimed at showing that firearms examination is accurate, that is, has low error rates. Less studied has been the question of consistency, of. whether two examinations of the same bullets or cartridge cases come to the same conclusion, carried out by an examiner on separate occasions -- intrarater reliability or repeatability -- or by two examiners -- interrater reliability or reproducibility. One important study, described in a 2020 Report by the Ames Laboratory-USDOE to the Federal Bureau of Investigation, went beyond considerations of accuracy to investigate firearms examination repeatability and reproducibility. The Report's conclusions were paradoxical. The observed agreement of examiners with themselves or with other examiners appears mediocre. However, the study concluded repeatability and reproducibility are satisfactory, on grounds that the observed agreement exceeds a quantity called the expected agreement. We find that appropriately employing expected agreement as it was intended does not suggest satisfactory repeatability and reproducibility, but the opposite.
With the advent of open source software, a veritable treasure trove of previously proprietary software development data was made available. This opened the field of empirical software engineering research to anyone in academia. Data that is mined from software projects, however, requires extensive processing and needs to be handled with utmost care to ensure valid conclusions. Since the software development practices and tools have changed over two decades, we aim to understand the state-of-the-art research workflows and to highlight potential challenges. We employ a systematic literature review by sampling over one thousand papers from leading conferences and by analyzing the 286 most relevant papers from the perspective of data workflows, methodologies, reproducibility, and tools. We found that an important part of the research workflow involving dataset selection was particularly problematic, which raises questions about the generality of the results in existing literature. Furthermore, we found a considerable number of papers provide little or no reproducibility instructions -- a substantial deficiency for a data-intensive field. In fact, 33% of papers provide no information on how their data was retrieved. Based on these findings, we propose ways to address these shortcomings via existing tools and also provide recommendations to improve research workflows and the reproducibility of research.
Automatic text summarization has experienced substantial progress in recent years. With this progress, the question has arisen whether the types of summaries that are typically generated by automatic summarization models align with users' needs. Ter Hoeve et al (2020) answer this question negatively. Amongst others, they recommend focusing on generating summaries with more graphical elements. This is in line with what we know from the psycholinguistics literature about how humans process text. Motivated from these two angles, we propose a new task: summarization with graphical elements, and we verify that these summaries are helpful for a critical mass of people. We collect a high quality human labeled dataset to support research into the task. We present a number of baseline methods that show that the task is interesting and challenging. Hence, with this work we hope to inspire a new line of research within the automatic summarization community.
Recommender systems aim to recommend new items to users by learning user and item representations. In practice, these representations are highly entangled as they consist of information about multiple factors, including user's interests, item attributes along with confounding factors such as user conformity, and item popularity. Considering these entangled representations for inferring user preference may lead to biased recommendations (e.g., when the recommender model recommends popular items even if they do not align with the user's interests). Recent research proposes to debias by modeling a recommender system from a causal perspective. The exposure and the ratings are analogous to the treatment and the outcome in the causal inference framework, respectively. The critical challenge in this setting is accounting for the hidden confounders. These confounders are unobserved, making it hard to measure them. On the other hand, since these confounders affect both the exposure and the ratings, it is essential to account for them in generating debiased recommendations. To better approximate hidden confounders, we propose to leverage network information (i.e., user-social and user-item networks), which are shown to influence how users discover and interact with an item. Aside from the user conformity, aspects of confounding such as item popularity present in the network information is also captured in our method with the aid of \textit{causal disentanglement} which unravels the learned representations into independent factors that are responsible for (a) modeling the exposure of an item to the user, (b) predicting the ratings, and (c) controlling the hidden confounders. Experiments on real-world datasets validate the effectiveness of the proposed model for debiasing recommender systems.
Alerts are crucial for requesting prompt human intervention upon cloud anomalies. The quality of alerts significantly affects the cloud reliability and the cloud provider's business revenue. In practice, we observe on-call engineers being hindered from quickly locating and fixing faulty cloud services because of the vast existence of misleading, non-informative, non-actionable alerts. We call the ineffectiveness of alerts "anti-patterns of alerts". To better understand the anti-patterns of alerts and provide actionable measures to mitigate anti-patterns, in this paper, we conduct the first empirical study on the practices of mitigating anti-patterns of alerts in an industrial cloud system. We study the alert strategies and the alert processing procedure at Huawei Cloud, a leading cloud provider. Our study combines the quantitative analysis of millions of alerts in two years and a survey with eighteen experienced engineers. As a result, we summarized four individual anti-patterns and two collective anti-patterns of alerts. We also summarize four current reactions to mitigate the anti-patterns of alerts, and the general preventative guidelines for the configuration of alert strategy. Lastly, we propose to explore the automatic evaluation of the Quality of Alerts (QoA), including the indicativeness, precision, and handleability of alerts, as a future research direction that assists in the automatic detection of alerts' anti-patterns. The findings of our study are valuable for optimizing cloud monitoring systems and improving the reliability of cloud services.
Recommender system is one of the most important information services on today's Internet. Recently, graph neural networks have become the new state-of-the-art approach of recommender systems. In this survey, we conduct a comprehensive review of the literature in graph neural network-based recommender systems. We first introduce the background and the history of the development of both recommender systems and graph neural networks. For recommender systems, in general, there are four aspects for categorizing existing works: stage, scenario, objective, and application. For graph neural networks, the existing methods consist of two categories, spectral models and spatial ones. We then discuss the motivation of applying graph neural networks into recommender systems, mainly consisting of the high-order connectivity, the structural property of data, and the enhanced supervision signal. We then systematically analyze the challenges in graph construction, embedding propagation/aggregation, model optimization, and computation efficiency. Afterward and primarily, we provide a comprehensive overview of a multitude of existing works of graph neural network-based recommender systems, following the taxonomy above. Finally, we raise discussions on the open problems and promising future directions of this area. We summarize the representative papers along with their codes repositories in //github.com/tsinghua-fib-lab/GNN-Recommender-Systems.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.
Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.