亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Classical Markov Chain Monte Carlo methods have been essential for simulating statistical physical systems and have proven well applicable to other systems with complex degrees of freedom. Motivated by the statistical physics origins, Chen, Kastoryano, and Gily\'en [CKG23] proposed a continuous-time quantum thermodynamic analog to Glauber dynamic that is (i) exactly detailed balanced, (ii) efficiently implementable, and (iii) quasi-local for geometrically local systems. Physically, their construction gives a smooth variant of the Davies' generator derived from weak system-bath interaction. In this work, we give an efficiently implementable discrete-time quantum counterpart to Metropolis sampling that also enjoys the desirable features (i)-(iii). Also, we give an alternative highly coherent quantum generalization of detailed balanced dynamics that resembles another physically derived master equation, and propose a smooth interpolation between this and earlier constructions. We study generic properties of all constructions, including the uniqueness of the fixed-point and the locality of the resulting operators. We hope our results provide a systematic approach to the possible quantum generalizations of classical Glauber and Metropolis dynamics.

相關內容

Rule-based language processing systems have been overshadowed by neural systems in terms of utility, but it remains unclear whether neural NLP systems, in practice, learn the grammar rules that humans use. This work aims to shed light on the issue by evaluating state-of-the-art LLMs in a task of morphological analysis of complex Finnish noun forms. We generate the forms using an FST tool, and they are unlikely to have occurred in the training sets of the LLMs, therefore requiring morphological generalisation capacity. We find that GPT-4-turbo has some difficulties in the task while GPT-3.5-turbo struggles and smaller models Llama2-70B and Poro-34B fail nearly completely.

A common method for estimating the Hessian operator from random samples on a low-dimensional manifold involves locally fitting a quadratic polynomial. Although widely used, it is unclear if this estimator introduces bias, especially in complex manifolds with boundaries and nonuniform sampling. Rigorous theoretical guarantees of its asymptotic behavior have been lacking. We show that, under mild conditions, this estimator asymptotically converges to the Hessian operator, with nonuniform sampling and curvature effects proving negligible, even near boundaries. Our analysis framework simplifies the intensive computations required for direct analysis.

A new decoder for the SIF test problems of the CUTEst collection is described, which produces problem files allowing the computation of values and derivatives of the objective function and constraints of most \cutest\ problems directly within ``native'' Matlab, Python or Julia, without any additional installation or interfacing with MEX files or Fortran programs. When used with Matlab, the new problem files optionally support reduced-precision computations.

Several new geometric quantile-based measures for multivariate dispersion, skewness, kurtosis, and spherical asymmetry are defined. These measures differ from existing measures, which use volumes and are easy to calculate. Some theoretical justification is given, followed by experiments illustrating that they are reasonable measures of these distributional characteristics and computing confidence regions with the desired coverage.

In relational verification, judicious alignment of computational steps facilitates proof of relations between programs using simple relational assertions. Relational Hoare logics (RHL) provide compositional rules that embody various alignments of executions. Seemingly more flexible alignments can be expressed in terms of product automata based on program transition relations. A single degenerate alignment rule (self-composition), atop a complete Hoare logic, comprises a RHL for $\forall\forall$ properties that is complete in the ordinary logical sense (Cook'78). The notion of alignment completeness was previously proposed as a more satisfactory measure, and some rules were shown to be alignment complete with respect to a few ad hoc forms of alignment automata. This paper proves alignment completeness with respect to a general class of $\forall\forall$ alignment automata, for a RHL comprised of standard rules together with a rule of semantics-preserving rewrites based on Kleene algebra with tests. A new logic for $\forall\exists$ properties is introduced and shown to be alignment complete. The $\forall\forall$ and $\forall\exists$ automata are shown to be semantically complete. Thus the logics are both complete in the ordinary sense. Recent work by D'Osualdo et al highlights the importance of completeness relative to assumptions (which we term entailment completeness), and presents $\forall\forall$ examples seemingly beyond the scope of RHLs. Additional rules enable these examples to be proved in our RHL, shedding light on the open problem of entailment completeness.

Mediation analyses allow researchers to quantify the effect of an exposure variable on an outcome variable through a mediator variable. If a binary mediator variable is misclassified, the resulting analysis can be severely biased. Misclassification is especially difficult to deal with when it is differential and when there are no gold standard labels available. Previous work has addressed this problem using a sensitivity analysis framework or by assuming that misclassification rates are known. We leverage a variable related to the misclassification mechanism to recover unbiased parameter estimates without using gold standard labels. The proposed methods require the reasonable assumption that the sum of the sensitivity and specificity is greater than 1. Three correction methods are presented: (1) an ordinary least squares correction for Normal outcome models, (2) a multi-step predictive value weighting method, and (3) a seamless expectation-maximization algorithm. We apply our misclassification correction strategies to investigate the mediating role of gestational hypertension on the association between maternal age and pre-term birth.

Large language models (LLMs) have made impressive progress in handling simple math problems, yet they still struggle with more challenging and complex mathematical tasks. In this paper, we introduce a series of LLMs that employs the Decomposition of thought with code assistance and self-correction for mathematical reasoning, dubbed as DotaMath. DotaMath models tackle complex mathematical tasks by decomposing them into simpler logical subtasks, leveraging code to solve these subtasks, obtaining fine-grained feedback from the code interpreter, and engaging in self-reflection and correction. By annotating diverse interactive tool-use trajectories and employing query evolution on GSM8K and MATH datasets, we generate an instruction fine-tuning dataset called DotaMathQA with 574K query-response pairs. We train a series of base LLMs using imitation learning on DotaMathQA, resulting in DotaMath models that achieve remarkable performance compared to open-source LLMs across various in-domain and out-of-domain benchmarks. Notably, DotaMath-deepseek-7B showcases an outstanding performance of 64.8% on the competitive MATH dataset and 86.7% on GSM8K. Besides, DotaMath-deepseek-7B maintains strong competitiveness on a series of in-domain and out-of-domain benchmarks (Avg. 80.1%). Looking forward, we anticipate that the DotaMath paradigm will open new pathways for addressing intricate mathematical problems. Our code is publicly available at //github.com/ChengpengLi1003/DotaMath.

Shape-restricted inferences have exhibited empirical success in various applications with survival data. However, certain works fall short in providing a rigorous theoretical justification and an easy-to-use variance estimator with theoretical guarantee. Motivated by Deng et al. (2023), this paper delves into an additive and shape-restricted partially linear Cox model for right-censored data, where each additive component satisfies a specific shape restriction, encompassing monotonic increasing/decreasing and convexity/concavity. We systematically investigate the consistencies and convergence rates of the shape-restricted maximum partial likelihood estimator (SMPLE) of all the underlying parameters. We further establish the aymptotic normality and semiparametric effiency of the SMPLE for the linear covariate shift. To estimate the asymptotic variance, we propose an innovative data-splitting variance estimation method that boasts exceptional versatility and broad applicability. Our simulation results and an analysis of the Rotterdam Breast Cancer dataset demonstrate that the SMPLE has comparable performance with the maximum likelihood estimator under the Cox model when the Cox model is correct, and outperforms the latter and Huang (1999)'s method when the Cox model is violated or the hazard is nonsmooth. Meanwhile, the proposed variance estimation method usually leads to reliable interval estimates based on the SMPLE and its competitors.

A number of recent studies have proposed that linear representations are appropriate for solving nonlinear dynamical systems with quantum computers, which fundamentally act linearly on a wave function in a Hilbert space. Linear representations, such as the Koopman representation and Koopman von Neumann mechanics, have regained attention from the dynamical-systems research community. Here, we aim to present a unified theoretical framework, currently missing in the literature, with which one can compare and relate existing methods, their conceptual basis, and their representations. We also aim to show that, despite the fact that quantum simulation of nonlinear classical systems may be possible with such linear representations, a necessary projection into a feasible finite-dimensional space will in practice eventually induce numerical artifacts which can be hard to eliminate or even control. As a result, a practical, reliable and accurate way to use quantum computation for solving general nonlinear dynamical systems is still an open problem.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司