By using the notion of $d$-embedding $\Gamma$ of a (canonical) subgeometry $\Sigma$ and of exterior set with respect to the $h$-secant variety $\Omega_{h}(\mathcal{A})$ of a subset $\mathcal{A}$, $ 0 \leq h \leq n-1$, in the finite projective space $\mathrm{PG}(n-1,q^n)$, $n \geq 3$, in this article we construct a class of non-linear $(n,n,q;d)$-MRD codes for any $ 2 \leq d \leq n-1$. A code $\mathcal{C}_{\sigma,T}$ of this class, where $1\in T \subset \mathbb{F}_q^*$ and $\sigma$ is a generator of $\mathrm{Gal}(\mathbb{F}_{q^n}|\mathbb{F}_q)$, arises from a cone of $\mathrm{PG}(n-1,q^n)$ with vertex an $(n-d-2)$-dimensional subspace over a maximum exterior set $\mathcal{E}$ with respect to $\Omega_{d-2}(\Gamma)$. We prove that the codes introduced in [Cossidente, A., Marino, G., Pavese, F.: Non-linear maximum rank distance codes. Des. Codes Cryptogr. 79, 597--609 (2016); Durante, N., Siciliano, A.: Non-linear maximum rank distance codes in the cyclic model for the field reduction of finite geometries. Electron. J. Comb. (2017); Donati, G., Durante, N.: A generalization of the normal rational curve in $\mathrm{PG}(d,q^n)$ and its associated non-linear MRD codes. Des. Codes Cryptogr. 86, 1175--1184 (2018)] are appropriate punctured ones of $\mathcal{C}_{\sigma,T}$ and solve completely the inequivalence issue for this class showing that $\mathcal{C}_{\sigma,T}$ is neither equivalent nor adjointly equivalent to the non-linear MRD code $\mathcal{C}_{n,k,\sigma,I}$, $I \subseteq \mathbb{F}_q$, obtained in [Otal, K., \"Ozbudak, F.: Some new non-additive maximum rank distance codes. Finite Fields and Their Applications 50, 293--303 (2018).].
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
Masked autoencoders are scalable vision learners, as the title of MAE \cite{he2022masked}, which suggests that self-supervised learning (SSL) in vision might undertake a similar trajectory as in NLP. Specifically, generative pretext tasks with the masked prediction (e.g., BERT) have become a de facto standard SSL practice in NLP. By contrast, early attempts at generative methods in vision have been buried by their discriminative counterparts (like contrastive learning); however, the success of mask image modeling has revived the masking autoencoder (often termed denoising autoencoder in the past). As a milestone to bridge the gap with BERT in NLP, masked autoencoder has attracted unprecedented attention for SSL in vision and beyond. This work conducts a comprehensive survey of masked autoencoders to shed insight on a promising direction of SSL. As the first to review SSL with masked autoencoders, this work focuses on its application in vision by discussing its historical developments, recent progress, and implications for diverse applications.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
To retrieve more relevant, appropriate and useful documents given a query, finding clues about that query through the text is crucial. Recent deep learning models regard the task as a term-level matching problem, which seeks exact or similar query patterns in the document. However, we argue that they are inherently based on local interactions and do not generalise to ubiquitous, non-consecutive contextual relationships.In this work, we propose a novel relevance matching model based on graph neural networks to leverage the document-level word relationships for ad-hoc retrieval. In addition to the local interactions, we explicitly incorporate all contexts of a term through the graph-of-word text format. Matching patterns can be revealed accordingly to provide a more accurate relevance score. Our approach significantly outperforms strong baselines on two ad-hoc benchmarks. We also experimentally compare our model with BERT and show our ad-vantages on long documents.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.
Multi-paragraph reasoning is indispensable for open-domain question answering (OpenQA), which receives less attention in the current OpenQA systems. In this work, we propose a knowledge-enhanced graph neural network (KGNN), which performs reasoning over multiple paragraphs with entities. To explicitly capture the entities' relatedness, KGNN utilizes relational facts in knowledge graph to build the entity graph. The experimental results show that KGNN outperforms in both distractor and full wiki settings than baselines methods on HotpotQA dataset. And our further analysis illustrates KGNN is effective and robust with more retrieved paragraphs.
Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.
Extreme multi-label text classification (XMC) aims to tag each input text with the most relevant labels from an extremely large label set, such as those that arise in product categorization and e-commerce recommendation. Recently, pretrained language representation models such as BERT achieve remarkable state-of-the-art performance across a wide range of NLP tasks including sentence classification among small label sets (typically fewer than thousands). Indeed, there are several challenges in applying BERT to the XMC problem. The main challenges are: (i) the difficulty of capturing dependencies and correlations among labels, whose features may come from heterogeneous sources, and (ii) the tractability to scale to the extreme label setting as the model size can be very large and scale linearly with the size of the output space. To overcome these challenges, we propose X-BERT, the first feasible attempt to finetune BERT models for a scalable solution to the XMC problem. Specifically, X-BERT leverages both the label and document text to build label representations, which induces semantic label clusters in order to better model label dependencies. At the heart of X-BERT is finetuning BERT models to capture the contextual relations between input text and the induced label clusters. Finally, an ensemble of the different BERT models trained on heterogeneous label clusters leads to our best final model. Empirically, on a Wiki dataset with around 0.5 million labels, X-BERT achieves new state-of-the-art results where the precision@1 reaches 67:80%, a substantial improvement over 32.58%/60.91% of deep learning baseline fastText and competing XMC approach Parabel, respectively. This amounts to a 11.31% relative improvement over Parabel, which is indeed significant since the recent approach SLICE only has 5.53% relative improvement.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.