亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Algorithms for causal discovery have recently undergone rapid advances and increasingly draw on flexible nonparametric methods to process complex data. With these advances comes a need for adequate empirical validation of the causal relationships learned by different algorithms. However, for most real data sources true causal relations remain unknown. This issue is further compounded by privacy concerns surrounding the release of suitable high-quality data. To help address these challenges, we gather a complex dataset comprising measurements from an assembly line in a manufacturing context. This line consists of numerous physical processes for which we are able to provide ground truth causal relationships on the basis of a detailed study of the underlying physics. We use the assembly line data and associated ground truth information to build a system for generation of semisynthetic manufacturing data that supports benchmarking of causal discovery methods. To accomplish this, we employ distributional random forests in order to flexibly estimate and represent conditional distributions that may be combined into joint distributions that strictly adhere to a causal model over the observed variables. The estimated conditionals and tools for data generation are made available in our Python library $\texttt{causalAssembly}$. Using the library, we showcase how to benchmark several well-known causal discovery algorithms.

相關內容

There has been extensive evidence demonstrating that deep neural networks are vulnerable to adversarial examples, which motivates the development of defenses against adversarial attacks. Existing adversarial defenses typically improve model robustness against individual specific perturbation types (\eg, $\ell_{\infty}$-norm bounded adversarial examples). However, adversaries are likely to generate multiple types of perturbations in practice (\eg, $\ell_1$, $\ell_2$, and $\ell_{\infty}$ perturbations). Some recent methods improve model robustness against adversarial attacks in multiple $\ell_p$ balls, but their performance against each perturbation type is still far from satisfactory. In this paper, we observe that different $\ell_p$ bounded adversarial perturbations induce different statistical properties that can be separated and characterized by the statistics of Batch Normalization (BN). We thus propose Gated Batch Normalization (GBN) to adversarially train a perturbation-invariant predictor for defending multiple $\ell_p$ bounded adversarial perturbations. GBN consists of a multi-branch BN layer and a gated sub-network. Each BN branch in GBN is in charge of one perturbation type to ensure that the normalized output is aligned towards learning perturbation-invariant representation. Meanwhile, the gated sub-network is designed to separate inputs added with different perturbation types. We perform an extensive evaluation of our approach on commonly-used dataset including MNIST, CIFAR-10, and Tiny-ImageNet, and demonstrate that GBN outperforms previous defense proposals against multiple perturbation types (\ie, $\ell_1$, $\ell_2$, and $\ell_{\infty}$ perturbations) by large margins.

In this work, we present Con$^{2}$DA, a simple framework that extends recent advances in semi-supervised learning to the semi-supervised domain adaptation (SSDA) problem. Our framework generates pairs of associated samples by performing stochastic data transformations to a given input. Associated data pairs are mapped to a feature representation space using a feature extractor. We use different loss functions to enforce consistency between the feature representations of associated data pairs of samples. We show that these learned representations are useful to deal with differences in data distributions in the domain adaptation problem. We performed experiments to study the main components of our model and we show that (i) learning of the consistent and contrastive feature representations is crucial to extract good discriminative features across different domains, and ii) our model benefits from the use of strong augmentation policies. With these findings, our method achieves state-of-the-art performances in three benchmark datasets for SSDA.

Deploying 3D detectors in unfamiliar domains has been demonstrated to result in a drastic drop of up to 70-90% in detection rate due to variations in lidar, geographical region, or weather conditions from their original training dataset. This domain gap leads to missing detections for densely observed objects, misaligned confidence scores, and increased high-confidence false positives, rendering the detector highly unreliable. To address this, we introduce MS3D++, a self-training framework for multi-source unsupervised domain adaptation in 3D object detection. MS3D++ provides a straightforward approach to domain adaptation by generating high-quality pseudo-labels, enabling the adaptation of 3D detectors to a diverse range of lidar types, regardless of their density. Our approach effectively fuses predictions of an ensemble of multi-frame pre-trained detectors from different source domains to improve domain generalization. We subsequently refine the predictions temporally to ensure temporal consistency in box localization and object classification. Furthermore, we present an in-depth study into the performance and idiosyncrasies of various 3D detector components in a cross-domain context, providing valuable insights for improved cross-domain detector ensembling. Experimental results on Waymo, nuScenes and Lyft demonstrate that detectors trained with MS3D++ pseudo-labels achieve state-of-the-art performance, comparable to training with human-annotated labels in Bird's Eye View (BEV) evaluation for both low and high density lidar.

The Quantum Alternating Operator Ansatz (QAOA) is a hybrid classical-quantum algorithm that aims to sample the optimal solution(s) of discrete combinatorial optimization problems. We present optimized QAOA circuit constructions for sampling MAX $k$-SAT problems, specifically for $k=3$ and $k=4$. The novel $4$-SAT QAOA circuit construction we present uses measurement based uncomputation, followed by classical feed forward conditional operations. The QAOA circuit parameters for $3$-SAT are optimized via exact classical (noise-free) simulation, using HPC resources to simulate up to $20$ rounds on $10$ qubits. In order to explore the limits of current NISQ devices we execute these optimized QAOA circuits for random $3$-SAT test instances with clause-to-variable ratio $4$ on four trapped ion quantum computers: Quantinuum H1-1 (20 qubits), IonQ Harmony (11 qubits), IonQ Aria 1 (25 qubits), and IonQ Forte (30 qubits). The QAOA circuits that are executed include $n=10$ up to $p=20$, and $n=22$ for $p=1$ and $p=2$. The high round circuits use upwards of 9,000 individual gate instructions, making these some of the largest QAOA circuits executed on NISQ devices. Our main finding is that current NISQ devices perform best at low round counts (i.e., $p = 1,\ldots, 5$) and then -- as expected due to noise -- gradually start returning satisfiability truth assignments that are no better than randomly picked solutions as the number of QAOA rounds are further increased.

Node classification is the task of predicting the labels of unlabeled nodes in a graph. State-of-the-art methods based on graph neural networks achieve excellent performance when all labels are available during training. But in real-life, models are often applied on data with new classes, which can lead to massive misclassification and thus significantly degrade performance. Hence, developing open-set classification methods is crucial to determine if a given sample belongs to a known class. Existing methods for open-set node classification generally use transductive learning with part or all of the features of real unseen class nodes to help with open-set classification. In this paper, we propose a novel generative open-set node classification method, i.e. $\mathcal{G}^2Pxy$, which follows a stricter inductive learning setting where no information about unknown classes is available during training and validation. Two kinds of proxy unknown nodes, inter-class unknown proxies and external unknown proxies are generated via mixup to efficiently anticipate the distribution of novel classes. Using the generated proxies, a closed-set classifier can be transformed into an open-set one, by augmenting it with an extra proxy classifier. Under the constraints of both cross entropy loss and complement entropy loss, $\mathcal{G}^2Pxy$ achieves superior effectiveness for unknown class detection and known class classification, which is validated by experiments on benchmark graph datasets. Moreover, $\mathcal{G}^2Pxy$ does not have specific requirement on the GNN architecture and shows good generalizations.

When provided with sufficient explanatory context, smaller Language Models have been shown to exhibit strong reasoning ability on challenging short-answer question-answering tasks where the questions are unseen in training. We evaluate two methods for further improvement in this setting. Both methods focus on combining rationales generated by a larger Language Model with longer contexts created from a multi-hop dense retrieval system. The first method ($\textit{RR}$) involves training a Rationale Ranking model to score both generated rationales and retrieved contexts with respect to relevance and truthfulness. We then use the scores to derive combined contexts from both knowledge sources using a number of combinatory strategies. For the second method ($\textit{RATD}$) we train a smaller Reasoning model using retrieval-augmented training datasets such that it becomes proficient at utilising relevant information from longer text sequences that may be only partially evidential and frequently contain many irrelevant sentences. Generally we find that both methods are effective but that the $\textit{RATD}$ method is more straightforward to apply and produces the strongest results in the unseen setting on which we focus. Our single best Reasoning model using only 440 million parameters materially improves upon strong comparable prior baselines for unseen evaluation datasets (StrategyQA 58.9 $\rightarrow$ 61.7 acc., CommonsenseQA 63.6 $\rightarrow$ 72.7 acc., ARC-DA 31.6 $\rightarrow$ 52.1 F1, IIRC 25.5 $\rightarrow$ 27.3 F1) and a version utilising our prior knowledge of each type of question in selecting a context combination strategy does even better. Our proposed models also generally outperform direct prompts against much larger models (BLOOM 175B and StableVicuna 13B) in both few-shot chain-of-thought and few-shot answer-only settings.

Click-through rate (CTR) prediction plays a critical role in recommender systems and online advertising. The data used in these applications are multi-field categorical data, where each feature belongs to one field. Field information is proved to be important and there are several works considering fields in their models. In this paper, we proposed a novel approach to model the field information effectively and efficiently. The proposed approach is a direct improvement of FwFM, and is named as Field-matrixed Factorization Machines (FmFM, or $FM^2$). We also proposed a new explanation of FM and FwFM within the FmFM framework, and compared it with the FFM. Besides pruning the cross terms, our model supports field-specific variable dimensions of embedding vectors, which acts as soft pruning. We also proposed an efficient way to minimize the dimension while keeping the model performance. The FmFM model can also be optimized further by caching the intermediate vectors, and it only takes thousands of floating-point operations (FLOPs) to make a prediction. Our experiment results show that it can out-perform the FFM, which is more complex. The FmFM model's performance is also comparable to DNN models which require much more FLOPs in runtime.

When labeled training data is scarce, a promising data augmentation approach is to generate visual features of unknown classes using their attributes. To learn the class conditional distribution of CNN features, these models rely on pairs of image features and class attributes. Hence, they can not make use of the abundance of unlabeled data samples. In this paper, we tackle any-shot learning problems i.e. zero-shot and few-shot, in a unified feature generating framework that operates in both inductive and transductive learning settings. We develop a conditional generative model that combines the strength of VAE and GANs and in addition, via an unconditional discriminator, learns the marginal feature distribution of unlabeled images. We empirically show that our model learns highly discriminative CNN features for five datasets, i.e. CUB, SUN, AWA and ImageNet, and establish a new state-of-the-art in any-shot learning, i.e. inductive and transductive (generalized) zero- and few-shot learning settings. We also demonstrate that our learned features are interpretable: we visualize them by inverting them back to the pixel space and we explain them by generating textual arguments of why they are associated with a certain label.

Network representation learning in low dimensional vector space has attracted considerable attention in both academic and industrial domains. Most real-world networks are dynamic with addition/deletion of nodes and edges. The existing graph embedding methods are designed for static networks and they cannot capture evolving patterns in a large dynamic network. In this paper, we propose a dynamic embedding method, dynnode2vec, based on the well-known graph embedding method node2vec. Node2vec is a random walk based embedding method for static networks. Applying static network embedding in dynamic settings has two crucial problems: 1) Generating random walks for every time step is time consuming 2) Embedding vector spaces in each timestamp are different. In order to tackle these challenges, dynnode2vec uses evolving random walks and initializes the current graph embedding with previous embedding vectors. We demonstrate the advantages of the proposed dynamic network embedding by conducting empirical evaluations on several large dynamic network datasets.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司