Transformer language models (LMs) have been shown to represent concepts as directions in the latent space of hidden activations. However, for any human-interpretable concept, how can we find its direction in the latent space? We present a technique called linear relational concepts (LRC) for finding concept directions corresponding to human-interpretable concepts by first modeling the relation between subject and object as a linear relational embedding (LRE). We find that inverting the LRE and using earlier object layers results in a powerful technique for finding concept directions that outperforms standard black-box probing classifiers. We evaluate LRCs on their performance as concept classifiers as well as their ability to causally change model output.
Large language models (LLMs) have achieved impressive linguistic capabilities. However, a key limitation persists in their lack of human-like memory faculties. LLMs exhibit constrained memory retention across sequential interactions, hindering complex reasoning. This paper explores the potential of applying cognitive psychology's working memory frameworks, to enhance LLM architecture. The limitations of traditional LLM memory designs are analyzed, including their isolation of distinct dialog episodes and lack of persistent memory links. To address this, an innovative model is proposed incorporating a centralized Working Memory Hub and Episodic Buffer access to retain memories across episodes. This architecture aims to provide greater continuity for nuanced contextual reasoning during intricate tasks and collaborative scenarios. While promising, further research is required into optimizing episodic memory encoding, storage, prioritization, retrieval, and security. Overall, this paper provides a strategic blueprint for developing LLM agents with more sophisticated, human-like memory capabilities, highlighting memory mechanisms as a vital frontier in artificial general intelligence.
Sequential decision-making algorithms such as reinforcement learning (RL) in real-world scenarios inevitably face environments with partial observability. This paper scrutinizes the effectiveness of a popular architecture, namely Transformers, in Partially Observable Markov Decision Processes (POMDPs) and reveals its theoretical limitations. We establish that regular languages, which Transformers struggle to model, are reducible to POMDPs. This poses a significant challenge for Transformers in learning POMDP-specific inductive biases, due to their lack of inherent recurrence found in other models like RNNs. This paper casts doubt on the prevalent belief in Transformers as sequence models for RL and proposes to introduce a point-wise recurrent structure. The Deep Linear Recurrent Unit (LRU) emerges as a well-suited alternative for Partially Observable RL, with empirical results highlighting the sub-optimal performance of the Transformer and considerable strength of LRU.
Racial and other demographic imputation is necessary for many applications, especially in auditing disparities and outreach targeting in political campaigns. The canonical approach is to construct continuous predictions -- e.g., based on name and geography -- and then to $\textit{discretize}$ the predictions by selecting the most likely class (argmax). We study how this practice produces $\textit{discretization bias}$. In particular, we show that argmax labeling, as used by a prominent commercial voter file vendor to impute race/ethnicity, results in a substantial under-count of African-American voters, e.g., by 28.2% points in North Carolina. This bias can have substantial implications in downstream tasks that use such labels. We then introduce a $\textit{joint optimization}$ approach -- and a tractable $\textit{data-driven thresholding}$ heuristic -- that can eliminate this bias, with negligible individual-level accuracy loss. Finally, we theoretically analyze discretization bias, show that calibrated continuous models are insufficient to eliminate it, and that an approach such as ours is necessary. Broadly, we warn researchers and practitioners against discretizing continuous demographic predictions without considering downstream consequences.
Large language models (LLMs) have been increasingly employed for (interactive) decision-making, via the development of LLM-based autonomous agents. Despite their emerging successes, the performance of LLM agents in decision-making has not been fully investigated through quantitative metrics, especially in the multi-agent setting when they interact with each other, a typical scenario in real-world LLM-agent applications. To better understand the limits of LLM agents in these interactive environments, we propose to study their interactions in benchmark decision-making settings in online learning and game theory, through the performance metric of \emph{regret}. We first empirically study the {no-regret} behaviors of LLMs in canonical (non-stationary) online learning problems, as well as the emergence of equilibria when LLM agents interact through playing repeated games. We then provide some theoretical insights into the no-regret behaviors of LLM agents, under certain assumptions on the supervised pre-training and the rationality model of human decision-makers who generate the data. Notably, we also identify (simple) cases where advanced LLMs such as GPT-4 fail to be no-regret. To promote the no-regret behaviors, we propose a novel \emph{unsupervised} training loss of \emph{regret-loss}, which, in contrast to the supervised pre-training loss, does not require the labels of (optimal) actions. We then establish the statistical guarantee of generalization bound for regret-loss minimization, followed by the optimization guarantee that minimizing such a loss may automatically lead to known no-regret learning algorithms. Our further experiments demonstrate the effectiveness of our regret-loss, especially in addressing the above ``regrettable'' cases.
Grounding the reasoning ability of large language models (LLMs) for embodied tasks is challenging due to the complexity of the physical world. Especially, LLM planning for multi-agent collaboration requires communication of agents or credit assignment as the feedback to re-adjust the proposed plans and achieve effective coordination. However, existing methods that overly rely on physical verification or self-reflection suffer from excessive and inefficient querying of LLMs. In this paper, we propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans. Specifically, we perform critic regression to learn a sequential advantage function from LLM-planned data, and then treat the LLM planner as an optimizer to generate actions that maximize the advantage function. It endows the LLM with the foresight to discern whether the action contributes to accomplishing the final task. We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems. Experiments on Overcooked-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents and query rounds of LLMs, demonstrating its high efficiency for grounding LLMs. More results are given at //read-llm.github.io/.
Improving the reasoning capabilities of large language models (LLMs) has attracted considerable interest. Recent approaches primarily focus on improving the reasoning process to yield a more precise final answer. However, in scenarios involving contextually aware reasoning, these methods neglect the importance of first identifying logical relationships from the context before proceeding with the reasoning. This oversight could lead to a superficial understanding and interaction with the context, potentially undermining the quality and reliability of the reasoning outcomes. In this paper, we propose an information re-organization (InfoRE) method before proceeding with the reasoning to enhance the reasoning ability of LLMs. Our re-organization method involves initially extracting logical relationships from the contextual content, such as documents or paragraphs, and subsequently pruning redundant content to minimize noise. Then, we utilize the re-organized information in the reasoning process. This enables LLMs to deeply understand the contextual content by clearly perceiving these logical relationships, while also ensuring high-quality responses by eliminating potential noise. To demonstrate the effectiveness of our approach in improving the reasoning ability, we conduct experiments using Llama2-70B, GPT-3.5, and GPT-4 on various contextually aware multi-hop reasoning tasks. Using only a zero-shot setting, our method achieves an average absolute improvement of 4% across all tasks, highlighting its potential to improve the reasoning performance of LLMs. Our source code is available at //github.com/hustcxx/InfoRE.
Machine unlearning, a novel area within artificial intelligence, focuses on addressing the challenge of selectively forgetting or reducing undesirable knowledge or behaviors in machine learning models, particularly in the context of large language models (LLMs). This paper introduces a methodology to align LLMs, such as Open Pre-trained Transformer Language Models, with ethical, privacy, and safety standards by leveraging the gradient ascent algorithm for knowledge unlearning. Our approach aims to selectively erase or modify learned information in LLMs, targeting harmful responses and copyrighted content. This paper presents a dual-pronged approach to enhance the ethical and safe behavior of large language models (LLMs) by addressing the issues of harmful responses and copyrighted content. To mitigate harmful responses, we applied gradient ascent on the PKU dataset, achieving a 75\% reduction in harmful responses for Open Pre-trained Transformer Language Models (OPT1.3b and OPT2.7b) \citet{zhang2022opt} while retaining previous knowledge using the TruthfulQA dataset \citet{DBLP:journals/corr/abs-2109-07958}. For handling copyrighted content, we constructed a custom dataset based on the Lord of the Rings corpus and aligned LLMs (OPT1.3b and OPT2.7b) \citet{zhang2022opt} through LoRA: Low-Rank Adaptation of Large Language Models \citet{DBLP:journals/corr/abs-2106-09685} finetuning. Subsequently, we employed gradient ascent to unlearn the Lord of the Rings content, resulting in a remarkable reduction in the presence of copyrighted material. To maintain a diverse knowledge base, we utilized the Book Corpus dataset. Additionally, we propose a new evaluation technique for assessing the effectiveness of harmful unlearning.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.