Our paper addresses the challenge of inferring causal effects in social network data, characterized by complex interdependencies among individuals resulting in challenges such as non-independence of units, interference (where a unit's outcome is affected by neighbors' treatments), and introduction of additional confounding factors from neighboring units. We propose a novel methodology combining graph neural networks and double machine learning, enabling accurate and efficient estimation of direct and peer effects using a single observational social network. Our approach utilizes graph isomorphism networks in conjunction with double machine learning to effectively adjust for network confounders and consistently estimate the desired causal effects. We demonstrate that our estimator is both asymptotically normal and semiparametrically efficient. A comprehensive evaluation against four state-of-the-art baseline methods using three semi-synthetic social network datasets reveals our method's on-par or superior efficacy in precise causal effect estimation. Further, we illustrate the practical application of our method through a case study that investigates the impact of Self-Help Group participation on financial risk tolerance. The results indicate a significant positive direct effect, underscoring the potential of our approach in social network analysis. Additionally, we explore the effects of network sparsity on estimation performance.
In this paper, the problem of spectral-efficient communication and computation resource allocation for distributed reconfigurable intelligent surfaces (RISs) assisted probabilistic semantic communication (PSC) in industrial Internet-of-Things (IIoT) is investigated. In the considered model, multiple RISs are deployed to serve multiple users, while PSC adopts compute-then-transmit protocol to reduce the transmission data size. To support high-rate transmission, the semantic compression ratio, transmit power allocation, and distributed RISs deployment must be jointly considered. This joint communication and computation problem is formulated as an optimization problem whose goal is to maximize the sum semantic-aware transmission rate of the system under total transmit power, phase shift, RIS-user association, and semantic compression ratio constraints. To solve this problem, a many-to-many matching scheme is proposed to solve the RIS-user association subproblem, the semantic compression ratio subproblem is addressed following greedy policy, while the phase shift of RIS can be optimized using the tensor based beamforming. Numerical results verify the superiority of the proposed algorithm.
This paper explores the impact of incorporating sentiment, emotion, and domain-specific lexicons into a transformer-based model for depression symptom estimation. Lexicon information is added by marking the words in the input transcripts of patient-therapist conversations as well as in social media posts. Overall results show that the introduction of external knowledge within pre-trained language models can be beneficial for prediction performance, while different lexicons show distinct behaviours depending on the targeted task. Additionally, new state-of-the-art results are obtained for the estimation of depression level over patient-therapist interviews.
Electronic Health Record (EHR) data, while rich in information, often suffers from sparsity, posing significant challenges in predictive modeling. Traditional imputation methods inadequately distinguish between real and imputed data, leading to potential inaccuracies in models. Addressing this, we introduce PRISM, a framework that indirectly imputes data through prototype representations of similar patients, thus ensuring denser and more accurate embeddings. PRISM also includes a feature confidence learner module, which evaluates the reliability of each feature in light of missing data. Additionally, it incorporates a new patient similarity metric that accounts for feature confidence, avoiding overreliance on imprecise imputed values. Our extensive experiments on the MIMIC-III, MIMIC-IV, PhysioNet Challenge 2012, eICU datasets demonstrate PRISM 's superior performance in predicting in-hospital mortality and 30-day readmission tasks, showcasing its effectiveness in handling EHR data sparsity. For the sake of reproducibility and further research, we have made the code publicly available at //github.com/yhzhu99/PRISM.
Despite significant strides in visual quality assessment, the neural mechanisms underlying visual quality perception remain insufficiently explored. This study employed fMRI to examine brain activity during image quality assessment and identify differences in human processing of images with varying quality. Fourteen healthy participants underwent tasks assessing both image quality and content classification while undergoing functional MRI scans. The collected behavioral data was statistically analyzed, and univariate and functional connectivity analyses were conducted on the imaging data. The findings revealed that quality assessment is a more complex task than content classification, involving enhanced activation in high-level cognitive brain regions for fine-grained visual analysis. Moreover, the research showed the brain's adaptability to different visual inputs, adopting different strategies depending on the input's quality. In response to high-quality images, the brain primarily uses specialized visual areas for precise analysis, whereas with low-quality images, it recruits additional resources including higher-order visual cortices and related cognitive and attentional networks to decode and recognize complex, ambiguous signals effectively. This study pioneers the intersection of neuroscience and image quality research, providing empirical evidence through fMRI linking image quality to neural processing. It contributes novel insights into the human visual system's response to diverse image qualities, thereby paving the way for advancements in objective image quality assessment algorithms.
We present results concerning the expressiveness and decidability of a popular graph learning formalism, graph neural networks (GNNs), exploiting connections with logic. We use a family of recently-discovered decidable logics involving "Presburger quantifiers". We show how to use these logics to measure the expressiveness of classes of GNNs, in some cases getting exact correspondences between the expressiveness of logics and GNNs. We also employ the logics, and the techniques used to analyze them, to obtain decision procedures for verification problems over GNNs. We complement this with undecidability results for static analysis problems involving the logics, as well as for GNN verification problems.
Software vulnerabilities enable exploitation by malicious hackers, compromising systems and data security. This paper examines bug bounty programs (BBPs) that incentivize ethical hackers to discover and responsibly disclose vulnerabilities to software vendors. Using game-theoretic models, we capture the strategic interactions between software vendors, ethical hackers, and malicious hackers. First, our analysis shows that software vendors can increase expected profits by participating in BBPs, explaining their growing adoption and the success of BBP platforms. Second, we find that vendors with BBPs will release software earlier, albeit with more potential vulnerabilities, as BBPs enable coordinated vulnerability disclosure and mitigation. Third, the optimal number of ethical hackers to invite to a BBP depends solely on the expected number of malicious hackers seeking exploitation. This optimal number of ethical hackers is lower than but increases with the expected malicious hacker count. Finally, higher bounties incentivize ethical hackers to exert more effort, thereby increasing the probability that they will discover severe vulnerabilities first while reducing the success probability of malicious hackers. These findings highlight BBPs' potential benefits for vendors beyond profitability. Earlier software releases are enabled by managing risks through coordinated disclosure. As cybersecurity threats evolve, BBP adoption will likely gain momentum, providing vendors with a valuable tool for enhancing security posture and stakeholder trust. Moreover, BBPs envelop vulnerability identification and disclosure into new market relationships and transactions, impacting software vendors' incentives regarding product security choices like release timing.
Test smells can pose difficulties during testing activities, such as poor maintainability, non-deterministic behavior, and incomplete verification. Existing research has extensively addressed test smells in automated software tests but little attention has been given to smells in natural language tests. While some research has identified and catalogued such smells, there is a lack of systematic approaches for their removal. Consequently, there is also a lack of tools to automatically identify and remove natural language test smells. This paper introduces a catalog of transformations designed to remove seven natural language test smells and a companion tool implemented using Natural Language Processing (NLP) techniques. Our work aims to enhance the quality and reliability of natural language tests during software development. The research employs a two-fold empirical strategy to evaluate its contributions. First, a survey involving 15 software testing professionals assesses the acceptance and usefulness of the catalog's transformations. Second, an empirical study evaluates our tool to remove natural language test smells by analyzing a sample of real-practice tests from the Ubuntu OS. The results indicate that software testing professionals find the transformations valuable. Additionally, the automated tool demonstrates a good level of precision, as evidenced by a F-Measure rate of 83.70%
Representing unstructured data in a structured form is most significant for information system management to analyze and interpret it. To do this, the unstructured data might be converted into Knowledge Graphs, by leveraging an information extraction pipeline whose main tasks are named entity recognition and relation extraction. This thesis aims to develop a novel continual relation extraction method to identify relations (interconnections) between entities in a data stream coming from the real world. Domain-specific data of this thesis is corona news from German and Austrian newspapers.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.